

0

ADAM: The Home Computing System
It's All Here

Here is everything you need to know about ADAM, the sensational comput
ing system from Coleco. ADAM: The Home Computing System will take you
from the very beginning when you need to know how to assemble your new
computer right through to sophisticated uses of the ADAM. Not only will this how
to book tell you how to make the most of ADAM's equipment and its accompany
ing software, but it's also a great reference that you'll turn to long after you're
experienced with the machine.

ADAM: The Home Computing System covers:
■ ADAM's Equipment - How to put together your machine and set

up your printer. How to handle data packs, ADAM's unique mem
ory storage devices.

■ ADAM's Operating System - How to create, store and retrieve
files. How to make backup copies of your programs.

■ SmartWriter - How to use ADAM's word processing program to
edit_, format and print out letters that look as though they were
type~J:ri--mt execuUve: t ;?Cretary,

■ Sm~r:ti~~~~~•-7 R~Vitf~::f-i~\~(your own programs with ADAM.
TheJ~(I. r /~(;\},~~tfl~:B}~:'.~1/; '. -ry:S\1Jprac\ical home management ~nd
edu<1,fW -. f/M:p1-qu~~vti:~ :/. '1~Jt;:r:un ~s soon as you type them mto
AD,.l\:li'-t ·. : ~•:,:,, ·,., . • • , ,,;,- ..I!.'' '-',. • ' ,• • . ..-,,; . :l"\l'.<'. ·, , <· 1-•j · , :, • . • • , , , , .,_ •, \ . ,,J I,\ .· ..

■ Grari!ly· •• _/){ .(it,ii,(, .. i;y;f~;- _, . -i?~ilborate, full-color images on the 11, •, •• ~•.J•. :-••J •l ,{ I • • l ... (·t••• ~ t ,?, '•·
scr~~(' f!{i1$,~lt~(11;} \;:\;!•, ,, ·,y({11~!;~solution graphics.

■ M~lf.fi , ·;'-;•1frt'a~~t:~tf1tr '; ·,)\i9~in~ - How to kee~ your AD~M
gom;tv.;. • • {itfJJl~{11w,i1;4· ,,-: • ·,;p r9~a1rs. The text even includes hsts
of. _c{JfJ. · '!~i;JtmtWJt·', ; r_.i11i~ :uses and how you can fix the

, prot':Jti 1 : r - :·,.:c::;::::: ;X:,'•' • ih:1.!''•
\ :f ')l'.. -- -~ -. ' . . •). ';:::ti i • :j

This coHM\ ; - • • ;J/if@/~;✓fn start you out and keep you on the
right track wittji,.i . · ... _ _: ·· :-_ ': ·/·/:Hfbprne computing systems. If you have
an ADAM thhtXL\~<. ·- .. ···: .. -< :,.,,. __ ; :✓---::Y:/:''' ,;

I \:: t,~"'-y_.·.:., .._l,. ,-~ ~- -· ;. . : ~~ ,,,.~':,):..~~~-,.'. ·;: .,

-~.f~)~·?:7i;;1:~~t :~~:~-·tt· •

ADAM: -The·~Roine Computing System
Eric N. Berg and Alan Smith

ISBN □-88693-066-9

$14.95
A Banbury Book

Distributed to bookstores by
The Putnam Publishing Group

Cover printed in U.S.A.
ISBN 0-88693-066-9

I

--=

. I

FREE WISHBOOK!
MAIL THIS

CARD TODAY!

Banbury Books is pleased to offer you our full-color catalog of computer
books. Just fill out this postpaid card, send it to us, and we'll mail your
catalog immediately.
AD.Alv1: The Home Compuung System

Name _________________________________ _

(Please print)

Address ___________________________ Apt. ____ _

City ----------------~tate _______ -ip _______ _

Was your copy of ADAM: The Home Computing System damaged in shipment?

Yes, ____ _ No, ____ _

II yes. list damage ------------------------------

We'd appreciate your answering the questions below:

Primary use of your ADAM:

OHome
D Data base access

D Business
D Recreation

Please check any other systems you own or use regularly:

O Commodore 64 O PCjr
0 TRS-80 0 IBM PC

□ School
O Word processing

□ Apple lie
Q IBM XT

0 Macintosh O IBM PC compatible _______________ _

Please list any computer users· groups you belong to: __________________ _

Age _____ Marital status _________________ No. of children ___ _

Approximate family income:

Thank you.

0 $ 10,000 - S20,000
0 $20,000 - S30.000
0 $30,000 - S40.000
0 $40,000 - S50.000
0 Over $50,000

B
U

S
IN

E
S

S
 R

EP
LY

 M
A

IL

Fi
rs

t C
la

ss
 P

er
m

it
N

o.
 1

14

W
ay

ne
, P

A
19

08
7

P
os

ta
ge

 w
ill

be
 p

ai
d

fo
r

by
 A

dd
re

ss
ee

BA
NB

UR
Y

BO
OK

S,
IN

C.

35
3

W
es

t
La

nc
as

te
r

A
ve

nu
e

W
ay

ne
, P

en
ns

yl
va

ni
a

19
08

7

11
11

11

N
o

P
os

ta
ge

N

ec
es

sa
ry

If

M
ai

le
d

in
 t

he

U
ni

te
d

S
ta

te
s

rgdir
Rectangle

1he Home Computing System

rgdir
Rectangle

rgdir
Rectangle

rgdir
Rectangle

1he Home Computing System

Eric N. Berg and Alan Smith

A Banbury Book

rgdir
Rectangle

Published by
Banbury Books, Inc.

353 West Lancaster Avenue
Wayne, Pennsylvania 19087

Copyright© 1984 by Eric N. Berg and Alan Smith

All rights reserved.
No part of this book may be reproduced or transmitted in any form or

by any means, electronic or mechanical, including photocopying,
recording or by any information storage and retrieval system, without

the prior written permission of the Publisher, excepting brief
quotes used in connection with reviews written specifically for inclusion

in a magazine or newspaper.

ISBN: 0-88693-066-9
First printing - July 1984

10 9 8 7 6 5 4 3 2 1
Printed in the United States of America

ADAM™ is a trademark of Coleco Industries, Inc.
SmartBASIC™ is a trademark of Coleco Industries, Inc.
SmartWriter™ is a trademark of Coleco Industries, Inc.

DISCLAIMER OF ALL WARRANTIES AND LIABILITIES
The authors and Publisher make no warranties, either expressed

or implied, with respect to this book or with respect to the programs or
the documentation contained herein, their quality, performance,

merchantability, or fitness for any particular purpose. The authors
and the Publisher shall not be liable for any incidental or

consequential damages in connection with, or arising out of, the
furnishing, performance, or the use of materials in this book.

TABLE OF CONTENTS

INTRODUCTION

CHAPTER 1

CHAPTER 2

GETTING STARTED

PRESENTING ADAM

9

11

17

CHAPTER 3 WORD PROCESSING 29

CHAPTER 4 ADVANCED WORD PROCESSING 43

CHAPTER 5 BEGINNING WITH SmartBASIC 51

CHAPTER 6 VARIABLES . 65

CHAPTER 7 INPUT and OUTPUT 83

CHAPTER 8 MORE SmartBASIC 101

CHAPTER 9 GRAPHICS . 129

CHAPTER 10 PROGRAMS . 139

CHAPTER 11 MAINTENANCE and
TROUBLE-SHOOTING 175

GLOSSARY 179

INTRODUCTION

Buying a computer is often like buying a car. The list price describes
a stripped-down model. Everything is optional. In the case of the car,
optional features may include a radio, air conditioning, rust proofing or
radial tires. With personal computers, the "extras" are much more
necessary. You need a printer and the cable that hooks it to the
computer. You need a way to store your programs and data: a tape or
disk drive. And a computer can't run without software: you must have at
least a programming language, and you probably want other programs
as well, such as a word processor. As a result, when you walk out of the
store with a new personal computer, you've probably spent considerably
more than the list price.

But ADAM is different. For a single price (usually under $700), you
get an entire computer system. ADAM comes with everything you need to
get started. This remarkably easy to use machine comes with a built-in
word processor, a version of the BASIC programming language, a printer
that produces letters and other documents that look like they were typed
on a high quality typewriter, even a game controller so that you can play
video games on your computer. Just hook the ADAM up to your television
set and your personal computer is ready to run.

Although the ADAM is simple for a computer, not all of its operations
are obvious to beginners. If you're like most ADAM owners, this is your
first personal computer. You need more guidance than you can get from
the manuals that come with the machine. ADAM: The Home Computing
System is a thorough introduction to the ADAM and all its features. As
you leaf through this book, you'll find that nothing is left to chance. We
start out with the obvious: how to put the system together. We tell you
where to find the on/off switch. We walk you through ADAM's keyboard.
Once you've finished the first two chapters, you'll understand ADAM's
equipment, in and out.

One of ADAM's most practical features is its built-in word processor,
SmartWriter. We devote two chapters to teaching you how to write and
edit on a computer, including how to insert and delete words, and how to
format a page. You'll learn how to save your correspondence in ADAM's
data pack. Naturally, you'll also learn how to print out handsomely typed
letters, resumes and reports.

ADAM: The Home Computing System can help you learn computer
programming as well. The machine comes with a data pack of Smart
BASIC, ADAM's version of the most popular programming language for
beginners. This book will teach you programming logic, SmartBASIC
commands and how to create graphic images on the screen. You also
can try out the numerous BASIC programs listed in the book, including a
loan amortization program, a program for computing how much a college
education will cost, a check balancing program, a computerized address
book, and much more.

Although the ADAM may be an incredible value in computers, it's still
a machine. And like all machines, ADAM may break down occasionally.
That's why we've included a chapter on maintenance and trouble
shooting. Is the ribbon in your printer jammed? Does your ADAM
sometimes refuse to save changes in your programs? We tell you what
the likely causes are and how you can fix the problems. We also give you
names, phone numbers and addresses of people you can contact if your
ADAM requires major repairs. With a little preventive maintenance and
some expert help, your ADAM should continue to run smoothly for years.

So, welcome to the new world of home computers! We hope you
enjoy ADAM: The Home Computing System as much as you enjoy
programming, playing and word processing with your ADAM.

10 • ADAM: The System

CHAPTER 1
GETTING STARTED

Most computer systems are sold in bits and pieces. You pay
separately for everything: the keyboard, the memory, the printer, even the
cables that connect everything. But ADAM is different. ADAM comes to
you as a complete computer system. You get not only the computer itself,
but also a letter-quality printer, game controllers, programs and all the
necessary cables and electrical equipment you will need to put the
system together. Indeed, the great value of ADAM is that for one price
you receive everything necessary to get started in amateur computing.
And the best way to begin is to take stock of ADAM, making sure that all
of the parts are there. Here's a checklist.

THE MEMORY CONSOLE The true brain of ADAM, the memory
console comes packed with 80 kilobytes of working memory. (One
kilobyte is 1,024 bytes.) About 54 kilobytes of memory are occupied by
the operating system. About 26 kilobytes of memory, which would
accommodate roughly thirteen pages of text, are available for your use.
There is also a built-in high-speed digital data drive that ADAM uses to
store your documents and programs and that you can use to let ADAM
access a variety of applications and games. In addition, there is room for
a second drive, should you decide to expand ADAM's memory.

THE SMARTWRITER LETTER-QUALITY PRINTER This may look
like a typewriter-until you see it typing by itself at 120 words per minute!
You can use regular, single sheets of paper or attached sheets of fanfold
paper made especially for computers. If you're accustomed to using
cartridge ribbons on a typewriter, you'll feel at home with ADAM's printer.
The cartridge slips easily in and out, making changing ribbons a breeze.

THE KEYBOARD For under $1,000 you expect to get a toy
keyboard with awkward clicking buttons instead of real keys, right? Not
with ADAM. Your computing powerhouse comes with a professional,
typewriter-style keyboard with 75 regular keys and 6 dedicated "function"
keys-enough for any typing or computing task. You'll also find two
joystick game controllers and a plastic game controller holder should you
decide to use only one joystick at a time.

THE CORDS AND OTHER ELECTRONIC GEAR necessary for
hooking up. In addition to the two cables that link ADAM's joysticks with
the keyboard, your new computer system should come equipped with a
coiled cord to link the memory console to the keyboard. You'll also find a
three-pronged electric adapter and a small metallic box called a switch
box that enables you to switch your television from its conventional use to
use as a computer monitor.

THE SOFTWARE This is probably the best example of how ADAM
scores a price breakthrough. While many other computer makers require
you to pay extra for software programs, ADAM comes already equipped
with some of the most popular computer programs available. You'll find
enclosed a digital data pack with SmartBASIC on it, and another data
pack with Coleco's newest science fiction action game-Buck Rogers:
Planet of Zoom. And let's not forget SmartWriter-the powerful and
versatile word processing system that is already built into ADAM and
doesn't require a special data pack. Finally, you'll find a blank data pack
to record programs, letters and other documents you wish to store on
tape. Be sure to take good care of the digital data packs. They are very
sensitive to electrical and magnetic fields. Never leave them on top of the
console during use or in a data drive when switching the power on and
off.

THE ADAM GUIDES To help you get to know ADAM, Coleco has
provided you with three manuals. One, the set-up manual, will give you
hints on setting. up your machine and getting started. The other two
guides discuss word processing and programming, respectively. Part of
the purpose of this book is to put what Coleco has written into plain
English that even the beginning computer user can understand.

In addition to making a highly technical subject easy to follow,
however, in this book we also hope to teach you about other exceptional
and heretofore unmentioned aspects of ADAM. For example, you'll learn
how you can use ADAM to communicate with the outside world. We'll
even explain how to draw color graphics with ADAM in exactly the same
manner as advanced computer programmers, using computers costing
thousands of dollars, do. To start, find a smooth, even surface on which to
lay out ADAM's components. You're about to be introduced to one of the
most exciting fields today-the burgeoning, fast-paced world of personal
computers.

Now that you've made sure you have everything for your new
computer system, it's time to hook up ADAM. Although this system has
been designed so that all the parts fit together easily and quickly, it's
important that you follow the assembly instructions carefully so that you
don't cross any wires or leave important components disconnected. Here
is a checklist of assembly steps.

12 • ADAM: The System

1. Make sure that all electric wires are disconnected. This means
disconnecting the plugs of your television set and of ADAM's letter-quality
printer.

2. Plug the flat keyboard cord into the opening marked "keyboard"
on the back of the memory console. Then take the other end of the
keyboard cord and plug it into the slot at the back of the keyboard.

3. Find the two adjoining ports for ADAM's game controllers on the
right side of the memory console. Plug the game controller cords into
them.

4. Attach the game controller holder to the keyboard. Do this by
hooking the holder under the keyboard and then sliding it away from you
until it locks into place.

5. Snap the game controller which is plugged into the leftmost port
into the holder.

6. Plug the SmartWriter printer cord into the side of the memory
console. One end of the cord is already attached to the printer.

7. Hook up the antenna switch box to the television set that will serve
as ADAM's screen. The antenna switch box-a small, rectangular,
metallic device-enables you to switch easily between using your ADAM
computer and regular television viewing. By using the switch box, you
can avoid having to disconnect wires on your set every time you want to
watch television instead of use ADAM. You just flick the switch on the
switch box!

Unfortunately, the antenna wiring systems for television sets differ
widely by manufacturer. At last count, United States television makers
were using at least five different types of wires to attach their antennae.
Such diversity makes it extremely difficult to describe all the possible
ways that a television set might be hooked up. What follows, then, is a
description of four of the most common ways:

?a. If a flat, double-wire, indoor antenna is used on your television
set: With the television plug disconnected, use a screwdriver to remove
the twin antenna leads from the back of your television. In their place,
attach the twin leads from the switch box. Then take the television
antenna leads that you have just disconnected and attach them to the
other side of the switch box.

7b. If a flat, double-wire, outdoor antenna is used on your television
set: With the television plug disconnected, use a screwdriver to remove
the antenna leads from the back of your television. At the same place,
which should be marked "VHF," attach the twin leads from the back of the
switch box. Attach the outdoor antenna leads that you have just discon
nected to the other end of the switch box.

n--- -- -.I r-. __ !o l _

7c. If you have a coaxial cable antenna on your television set: First
remove the cable antenna from the back of your television. At this point,
you may have to buy two special attachments: one that converts the
round end on your antenna into two flat wire leads, and another that
enables you to attach the switch box to your television set. Consult your
local television repairman or electronics store salesman to see how this is
done. Once you've gotten these special parts, connect the coaxial cable
to the switch box at the place marked "antenna." Then connect the two
leads from the switch box to the back of your television.

7d. If you have cable television: Essentially, follow the same proce
dure described in 7c. Once again, you'll have to buy some special parts
to connect the switch box to the television and the cable to the switch
box. Consult your local television repairman or electronics store clerk.

Now determine which channel you want to dedicate to ADAM. Your
choice is limited to either channel 3 or channel 4. Choose the one that
isn't used for broadcasts in your area, if such a case exists. Now, push
the switch on the back of ADAM's console to the position corresponding
to the channel you've selected. This switch is located next to where you
plug in the cord from the antenna switch box.

8. Finally, check to see if the power outlet you plan to use has three
openings or two. If the outlet is for a three-prong plug, attach the power
cord from the back of the printer to the outlet, making sure beforehand
that it is the standard 110 volts. If your outlet is for two-prong plugs, attach
the adapter that comes with your ADAM system to the end of the printer
power cord. Then plug the cord into the outlet. Congratulations! You've
just completed putting ADAM together.

To Turn on ADAM
You've taken an inventory of ADAM's parts and you've worked

diligently to assemble all of the components correctly. Now the moment
you've been waiting for has finally arrived; it's time to turn ADAM on.

1. Set the antenna switch box to the setting marked "computer" by
sliding the switch toward the top of the box in the direction of the word
"ADAM."

2. Turn on the television, setting the volume at a comfortable level.
Then turn the channel setting either to channel 3 or 4-whichever one
corresponds to the switch that you previously set.

3. Find the on/off switch on the back of ADAM's printer. Push it to the
"on" position. A title should appear briefly on your screen, to be replaced
almost immediately by the screen used by ADAM when it is working as an
electronic typewriter. At this point, ADAM has been turned on and is
ready to work. To make sure of this, check that the red power light on the
right of ADAM's keyboard is lighted. Indeed, whenever you're working
with ADAM, this power light should remain bright.

If you have problems, check to make sure that all the connections
and cables linking the components of the ADAM system are attached in
their proper places. Next, make sure that your television set and ADAM's
printer are securely plugged into their outlets. Finally, make sure that
you've turned your television to the appropriate channel (3 or 4), and that
the TV volume switch is turned to "on." Usually, going through this routine
will enable you to get to the root of your problem. If you're still having
trouble getting ADAM going, turn to the trouble-shooting section at the
end of the book.

Ri:>rn ::inrl ~mith . 1 I;

.....

CHAPTER2
PRESENTING ADAM

ADAM can be thought of as a series of components that together
form a computer system. The parts work together to accept information
from the outside world, process that information and then display the
results in a way that you can understand. When separated, each part of
ADAM is nearly powerless. But when combined, those same parts make
up a powerful electronic tool that can perform a range of useful and
exciting tasks, including word processing, home money management,
entertainment and complex mathematical calculations.

The Memory Console
ADAM's center is the "computer" itself, known among more ad

vanced users as the microprocessor. As the word implies, ADAM's
microprocessor processes all information according to the instructions
given to ADAM. More specifically, the microprocessor is the brain where
all of ADAM's "thinking" occurs. For example, you can easily instruct
ADAM's microprocessor to calculate the square root of five, move a block
of text from one paragraph to another, or store your grandmother's
favorite recipe for peach pie. With the appropriate commands, ADAM's
microprocessor can perform all these tasks quickly and effortlessly.
Regardless of our perception of a task's complexity, all tasks are equally
simple to ADAM. Some merely require more time than others.

If you could see inside ADAM, its microprocessor would look like a
small, black, plastic box about two inches long, half an inch wide, and a
quarter inch high. A small piece of silicon encased in the black plastic
has replaced the thousands of wires, switches and capacitors that made
up traditional electric circuits. This remarkable sliver of silicon is called a
"chip." As an added benefit of its small size, ADAM's microprocessor is
much faster, cheaper, more energy efficient and more reliable than the
bulky circuits of the past.

Bero and Smith • 17

Another extremely important part of ADAM is its memory. It is here
that ADAM remembers any instructions told to it or any information that it
has been asked to save. ADAM's memory consists of two major
categories. The first is memory you cannot alter; the second is memory
you can.

The memory that you cannot alter is known as Read-Only Memory, or
ROM. The contents of ADAM's ROM were placed there by the man
ufacturer. It generally contains information and instructions necessary for
ADAM's operation. You cannot erase the contents of Read-Only Memory;
even when you turn ADAM off, the contents of ROM are still there, waiting
until you turn ADAM back on.

In addition, ADAM contains memory in which you can store informa
tion of your choosing. Computer scientists have dubbed this kind of
memory Random Access Memory, or RAM. Some RAM is erased when
you switch off ADAM; some is not. If you want ADAM to remember your
instructions or any particular information, you must store the data you
wish to save in the RAM that is not erased when ADAM is turned off.

Now that you know your RAMs from your ROMs, you are ready to
learn about their applications in ADAM. Deep inside the memory console,
next to ADAM's microprocessor, are many other smaller chips, each
encased in a black plastic shell . These contain ADAM's internal memory,
both ROM and RAM. ADAM's internal RAM is often called the working
memory. This is where all of the instructions and information with which
ADAM is currently working are kept. This is the only memory erased when
you switch off the power. The amount of RAM is important because it
limits the number of instructions ADAM can follow: the greater the amount
of RAM, the greater ADAM's ability to work with large sets of instructions.

ADAM's internal ROM contains an important set of programs called
the operating system. The operating system is so important, in fact, that
ADAM could not function without it. Of course, you cannot lose the
contents of ADAM's ROM unless you take ADAM apart.

The cartridges you plug into ADAM's digital data drive and game
cartridge slot also contain ROM memory, called external ROM. You can
access the information and games in these cartridges as soon as you
insert them into ADAM.

To save information that you have typed into ADAM, or the results of
ADAM's computations, you must tell ADAM to send the information to the
digital data drive, which contains a form of RAM that is not erased when
ADAM is shut off. The digital data pack resembles an audio cassette
tape, and is inserted into the drive to record the information.

Computer scientists measure the amount of a computer's memory in
units called bytes, which are the largest units of information that ADAM's
microprocessor can digest at any one time. ADAM often seems to read

1A . AnA~,1- Tho ~""tam

great quantities of data all at once, but it is actually reading small pieces
of data extremely quickly. Since a byte is not very large, computer users
add the prefix "kilo" to the word "byte" to get the word "kilobyte." A
kilobyte, abbreviated as "K," is 1,024 bytes. ADAM has 80K of internal
RAM, enough to hold a document about forty pages long.

The Keyboard
The first thing you'll notice about ADAM's keyboard is that it's very

similar to the keyboard you'd find on a typewriter. All the letters are in their
normal places. The carriage return key is just where you'd expect it, on
the right side of ADAM's keyboard, and the shift keys (which capitalize
letters) appear on either side of the keyboard.

However, there are some other keys that are probably unfamiliar to
you. These keys enable you to use ADAM both as an electronic typewriter
and as a powerful word processor using the SmartWriter program. Some
of these keys enable you to print text using ADAM's letter-quality printer,
as described below:

1. Smart Keys
These are the six large, black keys along the top of ADAM's

keyboard that are labeled with Roman numerals. They correspond to six
colored rectangles that will appear on your television screen when you
use ADAM. Since the rectangles are also numbered, you can easily tell
which one corresponds to which Smart Key.

When you turn ADAM on, two colored rectangles appear on the
screen. One, Smart Key V, is labeled MARGIN/TAB/ETC. The other,
Smart Key VI, is labeled MARGIN RELEASE. Press Smart Key V.
Suddenly, six rectangles appear, along with four new labels, HORIZ
MARGIN, TAB, LINE SPACING, and DONE. Now, press Smart Key II,
"HORIZ MARGIN." The screen changes again, and the labels LEFT,
RIGHT and DONE appear. At this point, it's possible to change the left
and right margins of your electronic typewriter with the arrow keys on the
lower right part of the keyboard. By pressing Smart Key VI, you can return
to the original screen, consisting of the rectangles labeled MARGIN/TAB/
ETC and MARGIN RELEASE.

This is only one example of how the Smart Keys are used. When
you're using ADAM as a word processor, the Smart Keys have different
functions. They enable you, for example, to delete text, move blocks of
text, or change the colors on the screen. No matter how you're using

ADAM, every time you press a Smart Key the labels on your screen
change. These new labels are messages to you. They guide you step by
step, telling you what to do next or what will happen when you press a
Smart Key.

2. Command Keys
These are ten keys of standard typewriter size, two in the upper left

corner of the keyboard, eight in the upper right. Just as the Smart Keys
perform diverse functions, so do the command keys. Moreover, the labels
on your screen change when you press a command key, just as they do
when you press a Smart Key.

Look first to the left, and you'll see the key marked ESCAPE/WP. By
pressing this key after turning ADAM on, you convert ADAM from an
electronic typewriter into a word processor, thus the abbreviation WP on
the key. If you press ESCAPE/WP at any other time, you will be able to
cancel a command you've given that ADAM has not yet executed. If you
haven't given a command, pressing ESCAPE/WP another time won't do
anything.

Now consider the key marked WILD CARD next to ESCAPE/WP. For
now, this key does absolutely nothing. It has been reserved by Coleco for
future use in as yet undeveloped programs. Therefore, we won't spend
any more time explaining what this key doesn't do.

Now look to the right of the Smart Keys. The eight command keys
there function only when using the SmartWriter word processing pro
gram, which you entered when you pressed ESCAPE/WP. Nonetheless,
these keys are extremely important, as they permit you to undertake such
diverse word processing tasks as moving, copying or deleting text,
inserting letters or words into text, or storing text for later review. When
you've made all necessary corrections on your text and are satisfied with
the result, you can print it at 120 words per minute on ADAM's
letter-quality printer with the PRINT key.

Notice the arrows set in the shape of a compass on the bottom of the
keyboard. These are known as cursor-control keys, named after the
small, white line that moves across your screen as you work. In computer
language, this speck of light, known as the cursor, tells you where you are
in a document. To move the cursor, simply press any one of the arrows,
and the cursor moves in the direction indicated.

The HOME key, located in the center of the arrows, makes control
ling the cursor particularly easy. When you press HOME by itself, the top
line of text on your screen moves onto the roller (the black rectangle near
the bottom of the screen), and the cursor immediately moves to the
beginning of that line. If you press this key a second time, you will move
the cursor to the beginning of the document. If you press HOME in

20 • ADAM: The System

conjunction with an arrow, the cursor moves swiftly in the direction of the
arrow. For example, if you press HOME and the right arrow, the cursor
moves immediately to the right edge of your text. Try it. Pressing HOME
and the up arrow moves the cursor to the top of the roller and moves the
top line of text on the screen onto the roller. Finally, by pressing the down
arrow and HOME together, it's possible to move the text below the roller
onto the screen.

One final note: It's also possible to position ADAM's cursor by using
the joystick on the game controller. If you push the controller's circular
knob right, the cursor moves to the right. Push the knob down, and the
cursor moves down. It's very much like steering a toy car. ADAM's cursor
will move obediently in whichever direction you push the knob.

Exploring ADAM's Screen
If you've ever used a typewriter, chances are word processing will be

fun and easy right from the start with SmartWriter. That's because Coleco,
the company that invented ADAM, has designed ADAM's screen to
resemble a typewriter. As soon as you connect ADAM to your television
set and turn the computer on, most of what you see on the screen should
be familiar.

The first thing that will strike your eye when you turn ADAM on is the
long, black rectangle at the bottom of the screen. This is called ADAM's
roller, and it functions exactly like the roller on a conventional typewriter
it is the area in which ADAM's "keys" strike. The rest of the screen can be
thought of as the remainder of your paper. Although you can see the rest
of the page, only by scrolling it onto the roller can you work with it. This is
similar to moving paper back onto the roller when making a correction
with a typewriter. In this sense, then, ADAM's roller can be thought of as
your work area.

There is, however, one important difference between the roller on an
everyday typewriter and ADAM's roller. Whereas a traditional roller is
wide enough to hold a full page-that is, you can type the full width of a
paper with a regular roller-ADAM's roller is only 36 characters wide.
What this means is that it's not possible to fit a ful l line of printed text on
one line of your television screen. Only 36 characters will fit. If you want to
type further, you have to go to the next line on your screen. But the
important point to remember is that this second line on your screen still
corresponds to one printed line on a page. In fact, Coleco has designed

ADAM so that all the text that you can fit onto ADAM's roller corresponds
to one line on a printed page. Not until you've filled up a roller, and your
text scrolls up, have you in fact typed a full line.

Another way to think about this is as follows. Imagine you've just
typed the following line of text on a regular typewriter: ADAM is an
inexpensive, easy-to-use home computer from Coleco Industries. Now
imagine cutting the text into three segments as follows:

ADAM is an inexpensive,
easy-to-use home computer
from Coleco Industries.

By placing the middle segment below the first one and the last
segment on the bottom, you have in effect followed the same method that
ADAM does for typing text. Each of your narrow lines corresponds to one
line on ADAM's screen. Your three lines together compose one printed
line. In the same way, a full roller of type on ADAM corresponds to one
printed line on a page. Not until you are done filling ADAM's roller with
text have you in fact filled a regular typewriter text line.

Try the following. After turning ADAM on, press ESCAPE/WP to
activate the SmartWriter word processor. Then type the following:

When in the course of human events, it becomes necessary
for one people to dissolve the political bands which have
connected them with another, . . .

You'll notice that in this introduction to the Declaration of Indepen
dence everything up to the word "for" can be fit onto ADAM's roller. In
other words, everything up to "for" corresponds to one printed line. As
you type further, your text scrolls up onto the main part of ADAM's screen,
and a clean line appears on the roller, enabling you to begin a new line of
type-and a new printed line.

A question immediately arises. How can you tell where you are on a
printed page? After all, the second line on ADAM's roller generally
corresponds to the middle of a line on a piece of paper. How does one
avoid being confused?

The answer lies with the speck of light that moves across the top of
your screen as you type. This narrow white beam is called the "horizontal
gauge." The horizontal gauge is an indicator of where you would be on a
printed page. Since the scale across the top of the screen is a full 80
characters wide, you can tell exactly where you are by watching the
position of the gauge. As you type, the gauge moves horizontally to the
right, indicating that the text you are typing will be printed at that position
when you eventually tell ADAM to print it. If you move the cursor left, the

22 • ADAM: The System

gauge moves left. When the gauge approaches the right margin (indi
cated by a red bar along the right side of the gauge scale), a warning bell
signals-exactly as it would on a regular typewriter. Therefore, you'll
probably find it most helpful to concentrate on the horizontal gauge,
rather than on the text in the roller, if you're trying to determine where you
are on a printed page.

You'll also find it helpful to keep track of the white speck of light
moving along the left side of your screen. This is the vertical margin
marker and it tells you how far down the printed page you are. Every time
you strike ADAM's RETURN key, the white speck moves down a line,
indicating that you have begun a new printed line. When you scroll to the
top of your document using the cursor-control keys, the white speck
moves up. As such, it's easy to see when you're approaching the top of
the page-and to avoid typing too close to the bottom of the page.
Finally, the number at the top of the vertical margin marker indicates what
type of paper ADAM thinks you're using: letter (11 inches long) or legal
(14 inches long) size. It's also possible to change all four margins, the two
horizontal ones and the two vertical ones. That will be covered in greater
detail later.

The Printer
ADAM's printer, called the SmartWriter Letter-Quality Printer, is

essentially a typewriter without a keyboard. Rather than typing directly on
SmartWriter, you type your text into ADAM. ADAM then sends your text to
SmartWriter when you tell it to print. This gives you the opportunity to edit
your text before ADAM prints it. SmartWriter can print at about 120 words
per minute, much faster than most professional typists. But unlike typists,
ADAM rarely makes mistakes. The text will be printed on SmartWriter
exactly as you typed it into ADAM.

As with most modern typewriters, you can change the style of the
type, or font, of SmartWriter by replacing its daisy wheel-the thin, round
piece of plastic about four inches in diameter with petals like a daisy's
with one that has the typeface you want.

How You Can Use ADAM
The first electronic computers that appeared in America in the mid

1940s were big, clumsy machines that had limited applications. Slow and
costly, the first computers were used by the federal government, by large
corporations, and by a few wealthy universities. The government, for
example, used a computer called Univac I in census taking in the 1950s.
Corporations soon began to use the machines to·keep track of account
ing information, and eventually, high schools and colleges used com
puters to perform high level mathematical calculations and to store
student records.

Today, however, all that has changed. Computers, once reserved for
large organizations, have now become a tool of ordinary people and are
being used in some ordinary, yet very practical, ways. For example, many
housewives are storing recipes on home computers; both teenagers and
executives are keeping computerized electronic date books that can be
updated quickly and neatly; and thousands of Americans have started
writing their diaries on computers with word processors.

ADAM is one of the new computers now available for home use. It
has been given certain basic abilities, enabling you to perform im
mediately such tasks as programming, word processing and game
playing-the tasks all modern computers are expected to do. Addition
ally, by buying other programs available for ADAM on digital data packs,
you will be able to perform such applications as money management,
home budgeting, filing and creating an electronic diary and date book.

Programming
BASIC (Beginner's All-purpose Symbolic Instruction Code) is the

programming language that virtually all novice computer users first learn.
ADAM comes equipped with its own version of BASIC, called Smart
BASIC. To begin writing your own programs, you need only to insert the
SmartBASIC cartridge into ADAM's memory console. You must write your
instructions to ADAM in SmartBASIC, because ADAM cannot understand
everyday English. Fortunately, using SmartBASIC is very easy. Most
SmartBASIC instructions will be familiar to you, since they are made up of
simple English words.

Although SmartBASIC is simple to use, it is an advanced computer
language. With SmartBASIC, you could program ADAM to compute the
sum of every even number from 1 to 5,000, and ADAM could do it in only

24 • ADAM: The Svstem

a few seconds. Or you could instruct ADAM to alphabetize a huge
mailing list in a few minutes-a job that could take you hours to finish. You
will quickly discover that ADAM can save you from a. great deal of hard,
tedious work.

Finally, SmartBASIC can be used to teach children skills such as
spelling and reading. With a brief program, you can teach a child to
distinguish "cat" from "cap" and "coat" from "moat." Such computer
based learning is already under way in elementary schools nationwide.
With ADAM and SmartBASIC, you can bring the newest learning tech
niques into your home.

Word Processing
Word processing has been described as both a writer's dream and

the answer to an editor's prayer. What else enables a writer or an editor to
delete or insert words into a text without leaving any mess, or to move
entire blocks of text from one part of an essay to another without using
scissors and paste? In a nutshell, that is the purpose of word processing,
and ADAM's built-in program makes this as easy as using a regular
typewriter.

To begin with, the cursor control keys on the right of ADAM's
keyboard enable you to move anywhere in your text much more easily
than moving to the appropriate place on a sheet of paper in a typewriter.
Moreover, many of the keys at the top of ADAM's keyboard have been
preprogrammed to insert, delete, and move text, and as more and more
programs are written for ADAM, it may even be possible for you to create
your own unique word processing commands. For example, you may be
able to program ADAM's IV function key to erase whole paragraphs with
a single keystroke. Then, every time you press IV, ADAM will delete the
paragraph you no longer want.

With ADAM's word processor, you will be able to revise what you
have written electronically and instantly display the revised version on
your television screen. You will be able to store it in ADAM's memory and
come back to it later to weed out errors. Finally, after you have made all
your corrections, you will be able to select a format for your document
using some of ADAM's other commands, and print the whole thing on
ADAM's letter-quality printer. After using SmartWriter, you will never want
to use a mere typewriter again.

BP.rn ~nrl ~mith . 9~

Games and Entertainment
So far, you've learned about some of the more serious applications

for ADAM. However, ADAM does more than hard work; many people
purchase the machine to play electronic video games like those found in
arcades-action-packed games like Pac-Man, Space Invaders, Donkey
Kong and Zaxxon. Additionally, ADAM can play far more complex
games. Adventure, for example, leads you through an underground
maze filled with danger, intrigue and wealth, and chess challenges your
mind rather than your skill with a game controller.

ADAM comes with its own arcade-style game called Buck Rogers:
Planet of Zoom. The object of this fast-paced, three-dimensional space
game, which comes in a cartridge that you plug into ADAM's game
cartridge slot, is to destroy the engines of an enemy ship. You then enter
the ship and emerge later with a more advanced ship of your own. At any
one time, there can be as many as thirty-two moving objects on the
screen-missiles, space ships, satellites and meteors. An alert mind and
a quick hand are necessary to win this game.

A broad range of other game cartridges, from beginner's to ad
vanced, is already available. In fact, any cartridge that can be played on
Coleco's home video system, COLECOVISION, can be plugged into
ADAM. Any of these games can take advantage of ADAM's 16-color
graphics, keyboard and game controllers.

Money Management
Until recently, Wall Street investment experts and finance professors

were the sole users of financial models. They programmed their big
computers to model, or make various pictures of, investment op
portunities. The outcome of such a picture depended on certain assump
tions the modeler made, the level of sales or the tax rate, for example.

However, financial modeling is now available for nearly everyone.
With ADAM it is no more complex than inserting a data pack into the
memory console and telling ADAM what to do. Suppose you are buying a
home and want to know how your monthly payments might vary with
different mortgage rates. ADAM's SmartFiler spreadsheet program lets
you change the interest rate and get the answer almost instantly.
Suppose you want to compare monthly auto payments with various down
payments. ADAM's spreadsheet program will quickly calculate the
answer to this problem too.

26 • ADAM: The System

Finally, we cannot forget one of the most popular uses for computers
like ADAM, investing in the stock market. No one has a sure method for
picking winning stocks, but thousands of armchair investors are being
aided by home computers. ADAM can help you with your investments.
ADAM's graphic abilities and calculating talents might make the differ
ence between a good day and bad day on Wall Street.

Bera and Smith • '?7

CHAPTER3
WORD PROCESSING

Crumpled first drafts. Typos. Correction fluid. Erasers. Chances are
these terms are familiar if you've ever used a typewriter. How many times,
for example, have you typed the first version of a letter only to find yourself
tearing the paper out of the typewriter because you were dissatisfied with
the results? Similarly, unless you're 100 percent accurate when typing,
chances are you've used correction fluid to fix typos. Tearing up rough
drafts and painting over errors can be time consuming, not to mention
frustrating, and anyone who composes text on the typewriter, making
corrections and revisions along the way, knows how cumbersome that
can be. Fortunately, word processing provides a solution.

Basically, using word processing is the same as using a conven
tional typewriter- with one crucial difference. Whereas a typewriter
transfers what you write directly to paper, a word processor like ADAM's
SmartWriter displays your text on the screen. Rather than putting ink on
paper to create letters and words, ADAM's SmartWriter creates letters
and words electronically on your television set. The wonder of word
processing is that once you have your text on the screen, it's easy to
make corrections and revisions.

An example should illustrate how easy making corrections and other
changes can be with ADAM's SmartWriter. Suppose you've written the
word "accommmodate" with three "m's" instead of the two "m's" most
people are used to. If you've used an everyday typewriter, you might be
able to paint over the superfluous letter with correction fluid. For a cleaner
look, you might use erasable typing paper and erase the rogue "m." With
SmartWriter, by comparison, you need only position ADAM's cursor to the
right of the extra letter and press ADAM's backspace key; the letter
disappears before your eyes. That is why computer users refer to this as
a "destructive backspace." In fact, if you hold down ADAM's backspace
key, characters will continue to disappear until you release the button.
With a single keystroke, you can delete letters, words, lines or entire
blocks of text.

It's equally easy to insert text with SmartWriter. For example, suppose
you've just typed the introduction to Lincoln's Gettysburg Address as
follows: "Four score years ago, our fathers brought forth on this continent

Berg and Smith • 29

a new nation, conceived in liberty, and dedicated to the proposition that
all men are created equal. " Suddenly, you realize you've blundered
you've omitted seven years. The accepted version of Abraham Lincoln's
speech begins, "Four score and seven years ago ... " If you made this
mistake on a typewriter, chances are it would be an irreparable error, and
you would have to retype the page, but not so with SmartWriter. Using a
series of commands that make up ADAM's insert function, it's possible to
insert the missing words without retyping anything. What's more, the rest
of your document automatically adjusts to the insertion, creating just
enough blank space in which to set the inserted words properly. In fact.
with ADAM's insert key it's possible to insert whole words and paragraphs
anywhere in your text, exactly as if you had written them there in the first
place.

Finally, consider the times when you've wanted to move or
reorganize text while writing. The traditional way to do this is by using
scissors to cut the text into pieces and paste the rearranged sentences
on a new page. Again, just as you'd expect, SmartWriter provides a
cleaner, quicker alternative to "cutting and pasting." This alternative is
ADAM's MOVE command, which permits you to move a highlighted block
of text anywhere in the document without running through the house
looking for the good sewing shears.

These are just a few of the time saving ways in which you can use
SmartWriter. We'll be telling you more about these time savers in the
chapter on advanced word processing. For now, however, we'll leave you
with a parting thought: Most people who use word processors find that
they never want to use typewriters again. They find the convenience of
editing text "on line"-that is, on a computer screen-more efficient (and
fun!) than working with any electronic typewriter. Chances are that after
getting to know SmartWriter, you'll want to put your typewriter into storage
too.

Getting Started With SmartWriter
Entering Text

Getting started with SmartWriter couldn't be easier. To begin, simply
turn ADAM on by flipping the power switch on the back of the printer. At
this point ADAM functions as an electronic typewriter, with everything you
type on ADAM's keyboard immediately transmitted to the printer. To get
started with SmartWriter, press the ESCAPE/WP key.

30 • ADAM: The System

You'll notice that the Smart Key labels at the bottom of the screen
change. These labels guide you through the process of changing
margins and tab stops, altering the color of the screen, erasing and
inserting text, and searching for characters and words in the text.
However, you can begin working with SmartWriter without using any of
these functions, since Coleco has preset margins and tab stops for you.
Let's get right into things by entering some text.

Type the following proverbs:

A bird in hand is worth two in the bush.
A stitch in time saves nine.

Don't worry about typing too fast. ADAM's electronic brain can work so
quickly that you should not be able to overload it. You certainly don't need
to worry about correcting mistakes; you'll be able to fix them easily later.
For now, simply type the sentences and watch what happens when you
reach the end of the line on the roller.

If all goes well, you won't have to press the return key. Instead,
ADAM senses when you're approaching the end of a line and automati
cally skips to the next line at the right moment. Moreover, if ADAM can't fit
a word at the end of the first line, it automatically shifts that word to the
next line. This feature, called word wraparound, makes ADAM's return
key used far less frequently than in regular typewriter use. With ADAM,
about the only time you truly need to hit < RETURN> is to end a line
before you reach the right margin or to begin a new paragraph. Other
wise, you can type to your heart's content, leaving the creation of new
lines to ADAM.

Storing Text for Future Use
Suppose you've just finished typing your first novel, but you're not

ready to print it out. Instead, you'd like to leave ADAM for a while, muse
over what you've written, then make revisions after you've returned from a
show or the pizza parlor, or some other diversion. At this point, it's
necessary to record your cherished prose on the blank digital data pack
that comes with ADAM. The data pack acts as ADAM's memory, capable
of recording everything you've written. It looks like an ordinary audio
cassette, but you won't be able to insert it into your cassette player
because the placement of the holes in the plastic case is different.
Similarly, a normal cassette can't be loaded into ADAM.

Berg and Smith • 31

To store text, insert the data pack into the tape drive in ADAM's
memory console. Be sure not to put in the data pack marked SmartBASIC
or the one containing a game. Next, press the STORE/GET command key
on the right side of ADAM's keyboard. Suddenly, new Smart Key labels
appear at the bottom of your screen. One, labeled STORE SCREEN and
numbered IV, will enable you to store only what's on your screen. If you
want to store your whole document, press Smart Key V, labeled STORE
WK-SPACE. The expression WK-SPACE stands for "work space," and it
refers to the entire document with which you are working. For now, we'll
record only what's on the screen by pressing Smart Key IV.

After you do this, the labels at the bottom of your screen change
again. This time, ADAM wants to know on which tape drive you'd like to
store your text. If you have two tape drives, you can choose between
drives A and 8. Most persons just starting have only one drive-in the A
slot. We'll assume that's your position too. Press Smart Key 111, labeled
DRIVE A

The labels on the screen change yet another time, and ADAM asks
you to give your novel a name so that it can easily retrieve your
masterpiece from memory when asked. This name, the filename, will be
used to refer to this document when you retrieve it. It can be up to ten
characters long. You may use only letters, numbers or spaces in the
filename. In the lower left region of the screen, you will see the following
printed:

NEW FILE
PLEASE TYPE
NAME OF FILE

Whenever you see the NEW FILE message, you must use a filename that
has not been used before. You will not be able to store the same
document twice using the same filename. This may be changed in
subsequent versions of SmartWriter, since it prevents you from storing
your document as you are writing it. Fortunately there is a trick you can
use, which we'll discuss in the section on retrieving data. When you have
typed in a valid filename, press Smart Key VI , labeled STORE SCREEN.
At this point your text should disappear, the tape drive should begin
whirring, and ADAM should flash a new message on the screen informing
you that it is busy storing your text. Don't worry if the tape seems loud or if
it is spinning quite rapidly; this is part of ADAM's advanced memory
system. Rest assured that your prized prose is being etched onto the
tape. You'll know that ADAM has finished recording your work when your
text reappears on the screen and the original six Smart Key labels return
as well. It's now possible to pick up where you left off or take time out to
ponder your prose. To do so, remove the data pack and turn off the
switch on the back of the printer.

32 • ADAM: The System

Retrieving Stored Text
You're back. You've spent hours thinking about ways to improve your

novel. Now you've returned to ADAM and are ready to retrieve your
"manuscript" to make the necessary revisions. How is it done? Turn on
ADAM and place the data pack on which your novel is stored into drive A.
Press the ESCAPE/WP key and then the STORE/GET key.

As before, the Smart Key labels change, only this time instead of
pressing Smart Key IV to store a screenful of text, you press Smart Key VI ,
labeled GET. The labels change once more, and ADAM asks you from
which tape drive you'd like to get material. Press Smart Key Ill, labeled
DRIVE A.

At this point, ADAM tells you to be patient while it retrieves the
directory for drive A. The directory is exactly what you might expect-a
listing of the names of documents that have been stored on the tape in A.
Each filename appears on what look like the tabs of file folders. To retrieve
your document, position the arrow on the file folder beside the correct
filename. You can move the arrow by pressing the appropriate cursor
control keys on the bottom of the keyboard. With the arrow pointed at the
appropriate filename, you're ready to retrieve your novel from memory.
Press Smart Key VI, labeled GET FILE, and the tape will whir in search of
your pride and joy. Moments later, the first few lines of your novel should
reappear on the screen, along with the original six Smart Key labels. The
remainder of your document is in ADAM's working memory, its work
space. You can move the downward arrow of the cursor-control keys to
make the entire document scroll up the screen.

Always remember that when you retrieve files, ADAM doesn't erase
the file on which you are currently working. If you've been typing a new
document, or have previously retrieved one, both documents-that which
you see on the screen (which is in ADAM's working memory) and the one
you just told ADAM to get-will now be in ADAM's working memory, one
following the other. You will have merged both documents into one new
one, now stored in ADAM's working memory. This is a useful feature if you
want to merge files, but a headache if you don't.

If you don't want to merge the documents, erase the document that
is in the working memory (or store it on a data pack, if you don't want to
lose it) before telling ADAM to get another document. Use the procedure
in a following section, Clearing the Screen and Work Space, to erase the
document. Of course, if you've just turned ADAM on and haven't begun
typing, you won't have anything in ADAM's working memory to erase.

Once you've retrieved your novel, it's possible to make corrections to
what you've written or to add to the text. However, when you're done with
the revisions and are convinced you have a winning yarn, you still have
another important decision to make. You can either record the new

RArn ~nrl ~mith . ~~

version over the old, in effect erasing the old version, or else create a
separate file for the new version, leaving the old one intact. To make this
choice, you have to go through the procedure for storing files (outlined
above). This time, however, the message is slightly different when you
store the document. Instead of NEW FILE, you will see FILE: followed by
the name of the file you just retrieved. If you don't type in a new filename
and press Smart Key VI at that point, you will store the file on which you
are currently working in place of the old file with that filename. If you don't
want to do that, type in a new filename.

Here is the promised trick. After retrieving text from the digital data
pack, you can store your document any number of times as long as you
don't type in a new filename. If you are planning to create a long
document, consider storing it after you have completed only the first few
lines. Then clear the work space (using the instructions given previously)
and retrieve your document. Now you can continue. Store the document
each time you finish several pages. This will prevent you from losing too
much text in case of an unforeseen event, such as accidentally pulling
out ADAM's plug.

When you store a new document with the filename of an old one, the
old one isn't erased or lost immediately; it's transferred to another
directory, a backup directory. You can access this directory when you
see the file directory on your screen during the process of retrieving data.
Just press Smart Key V, labeled BACKUP FILE DIR. and the backup
directory will appear in the regular directory's place. At this point you can
retrieve any of these files.

If you store a document with the same filename three times, however,
the oldest version of the file will be lost. The backup directory saves only
the version of the document that was in the regular directory just prior to
using a STORE command.

You can also delete filenames from the directories with SmartWriter.
You might want to delete old files so you won't run short of storage space
if you have a limited number of digital data packs. To delete a file, tell
ADAM to show you the directory of files that are stored on the digital data
pack. You can do this with the STORE/GET key, following the procedure
necessary to save files or to bring a document into ADAM's working
memory. When you see the directory, just move the arrow to the name of
the file you want to erase and press the DELETE command key. ADAM
will then make you confirm this request by pressing Smart Key VI. If you
change your mind at this point, just press the ESCAPE/WP key. Similarly,
you can delete files that are stored in the backup file directory by telling
ADAM to display that directory on your screen.

34 • ADAM: The System

Learning to Correct Your Mistakes
SmartWriter can make basic changes to your text, such as deleting

and inserting material, and can also perform advanced tasks, such as
moving and copying blocks of text or searching for a particular word or
expression in a body of text.

To begin, enter SmartWriter and type the following text:

A penny saved is a penny earnez.

We've intentionally misspelled the word "earned," placing a "z" on the
end instead of a "d." To correct this error on a conventional typewriter,
you'd have to break out the correction fluid and paint over the mischiev
ous "z" or erase it by rubbing vigorously and maybe tearing the
paper-but not with SmartWriter. With the cursor positioned just after the
"z," try pressing the backspace key and watch what happens. The "z"
disappears. It is gobbled up by the cursor. If you press BACKSPACE
again, the "e" will be erased from your screen. Indeed, as long as you
press BACKSPACE, the cursor will continue moving left, swallowing
everything in its path. It's then possible to correct what you've written
simply by typing forward.

In fact, SmartWriter has been designed so that you don't even need
to erase letters to correct them-you can type right over them. In the
example above, it's possible to move to the beginning of the word
"earned" without erasing any of the letters. You simply move the cursor
left using the cursor-control keys, and "earnez" remains intact. Now, with
the cursor at "e," type "earned." Sure enough, you've written over every
letter, as if the first word didn't exist. And the miscreant "z" should be
vanquished; you've changed "earnez" to "earned."

Using the Delete Key
If you're like most typists, there will be times when erasing a single

letter or word won't be sufficient-you'll want to perform radical surgery
on your writing by deleting entire blocks of text. Suppose, for example,
that you've typed the following sentence:

In 1492, Columbus sailed the ocean blue blue.

RArn ;:mrl ~mith . ~~

Was the ocean so serenely blue that it's necessary to type "blue" twice?
Probably not. So let's delete the last word using SmartWriter's delete
procedure. Here's how:

Start by pressing the command key on the right side of the keyboard
marked DELETE. You'll notice that the Smart Key labels on the bottom of
the screen change. At this point you need to indicate to ADAM the block
of text you'd like to erase. This process of identifying a group of words for
editing is called highlighting, and with ADAM it's achieved by underlining
the words in question.

In our sample, we want to erase the word "blue," so bring ADAM's
cursor under the letter "b." Now press Smart Key IV, labeled HI-LITE. The
label should immediately change to HI-LITE OFF, meaning that until you
press that Smart Key again, ADAM's highlight, or underline, function is
on.

Begin moving the cursor right. First move it under the "I" in "blue, "
then under the "u" and then the "e." If all goes well, ADAM should
underline the entire word "blue." You'll know this is happening because a
red line will appear under the word to be deleted. And, as is always the
case when deleting text, you 'll want to highlight the blank space after the
word you want to eliminate also. Therefore, extend the highlighting
beyond the letter "e" by one space. This way you won't end up with extra
space between words when you 're done.

Once you are finished highlighting, tell ADAM you're done by
pressing Smart Key IV, labeled HI-LITE OFF. You've now marked the
word to be deleted and turned off ADAM's highlighter. There's only one
more step: actually deleting the word from your screen. Press Smart Key
VI , labeled FINAL DELETE. Sure enough, "blue," the underlined word,
disappears from view. The text to the right of the deleted word will move
over toward the left. Nothing will remain to show that the extraneous word
had ever existed, not even a gap. It would be as if you had never made
the typing error.

Inserting Text
Sometimes, of course, you want to insert rather than delete text. If

you want to insert text using a typewriter, you have the choice of either
starting over or scrolling up a line and placing your insertion over the
sentence in which you're working. Neither provides a particularly elegant
solution. Fortunately, SmartWriter does.

Suppose you're a rock music fan, and you've just typed the following
sentence from a Beatles song:

36 • ADAM: The Svstem

It's been a hard day's night, and I've been
working like a dog.

Being an award-winning songwriter, you decide to improve upon the
Beatles' work by inserting the words "so long" after "working." In other
words, you'd like the sentence to read: "It's been a hard day's night, and
I've been working so long like a dog." With SmartWriter, this can be done
easily, as follows.

First, place the cursor exactly where you'd like to make the insertion.
In this case, you'd like to make the insertion at the word "like," so place
ADAM's cursor under the "I." Second, press the command key at the top
of the screen marked INSERT. You'll notice that everything from the
cursor on disappears-but only temporarily. ADAM has given you space
to type your insertion while keeping track of what will follow (the original
end of your sentence). Third, type the words "so long," or any insertion of
your own. You can continue typing an insertion as long as you wish
because ADAM has given you the equivalent of pages of blank space for
making additions.

Once you've finished typing your insertion, you'll want to reconstruct
your old sentence with the insertion in place. Tell ADAM you're done by
pressing Smart Key VI , labeled DONE. Exactly as you had hoped, your
entire sentence reappears on the screen with the new words added: " It's
been a hard day's night. and I've been working so long like a dog."
Congratulations! Not only have you learned to insert text with SmartWriter,
you've proved yourself to be a virtuoso songwriter as well.

Clearing the Screen and Work Space
When you use the delete function, you can remove only one

screenful of text at a time. You can delete all of the text on the screen
more easily and quickly by pressing the CLEAR command key. You won't
need to highlight anything. Simply press Smart Key V, labeled CLEAR
SCREEN. ADAM will ask you to press Smart Key VI to confirm your
command. This is a safety feature for the protection of your work. If you
want to erase the entire document from ADAM's work space memory,
press Smart Key VI , CLEAR WK-SPACE, rather than Smart Key V after you
push the CLEAR command key. This will not affect anything that you have
previously stored on a digital data pack.

Berg and Smith • 37

Printing With ADAM's Daisy Wheel Printer
Suppose you're ready to print your finished text. You've learned to

enter and edit a document on ADAM's screen, to store your work on one
of ADAM's digital data packs, and to retrieve your text from memory. Now
it's time to make a "hard copy" of your text-en paper-to bring all of your
hard work to fruition.

With SmartWriter, it's possible to print text virtually anytime you
wish-either before you correct errors or after. You also have the choice
of printing an entire document or only what's on the screen. Finally, by
using fanfold paper made from numerous connected sheets, it's possible
to print multiple copies of your text without constantly feeding paper into
your printer. This way, while ADAM is busy printing, you are free to do
other chores.

To begin printing, press the command labeled PRINT on the right
side of ADAM's keyboard. You'll notice that the labels on the bottom of
your screen change. At this point, ADAM wants to know what you want to
print-only what's on the screen, or the contents of your entire document
(the work space). Press IV to print a screenful of text, or V to print the
whole work space.

Once again the Smart Key labels will change. This time ADAM asks
you a series of questions. By pressing Smart Key 11, for example, you tell
ADAM if you are using single sheets of paper or fanfold connected
sheets. By pressing Smart Key 111, you tell ADAM the page number of your
first page of text. Try pressing key Ill and watch what happens. The page
number on your screen, which had been 1, should now begin increasing.
Keep pressing this key until you reach the page number that you'd like
ADAM to print first. If you don't want to worry about pagination at all, press
Smart Key IV, labeled NO PAGE #. This shuts off ADAM's paging
function.

You've now told ADAM everything it needs to know to print your text.
At this point the only thing remaining to do is to insert paper into ADAM's
printer-either a single sheet or fanfold, whichever you've specified.

Insert the paper by pulling forward the paper-release lever on the left
side of ADAM's printer; then slide the paper under the back of the roller.
Once the paper is centered, you can lock it in place by returning the
release lever to its original position. Now roll the paper forward, exactly as
you would on a regular typewriter, by turning the platen knob on the right
side of the printer. Keep rolling the paper forward until the top is just
under the paper bar.

You're ready to print. Press Smart Key V, labeled PRINT. Almost
instantly, ADAM's printer comes to life. If everything is working well, the

38 • ADAM: The System

daisy wheel should now begin printing. Not only will your final printed
copy be of letter quality, exactly as if you had typed it yourself, but it will
be printed at 120 words per minute.

Margins, Tabs and Other Potpourri
If you're using narrow paper, envelopes or mailing labels in ADAM's

printer, you'll probably want to reset the margins before you begin
printing. ADAM will restructure all of the text in the document to fit within
the left and right margins you set, and will also vary the page breaks in
the text to adjust for the top and bottom margins.

Begin by pressing Smart Key I, MARGIN/TAB/ETC; then select the
type of margin that you want to change. Assume that you need a left
margin of 10 spaces, a right margin of 50, a top margin of 2 lines, and a
bottom margin of 20. Press Smart Key II, HORIZ MARGIN. You will then
see the current left and right margins, which will be set at 10 and 70 if
you've just turned ADAM on. The left margin is precisely where you want
it. To change the right margin, press Smart Key IV, RIGHT 70. Nothing
happens except for a sound from the television's speaker. But something
has happened. You can now use the left and right cursor controls to
change the number 70 to any value from 80 down to the value of the left
margin. Hold down the left arrow until the number changes to 50. If you
overshoot, just release the key and press the right arrow. You can now
press Smart Key V in order to change the top and bottom margins. When
the Smart Key labels change, you simply tell ADAM which margin to
change by selecting the appropriate Smart Key and using the same
arrow keys to alter the numbers listed on the screen. Push Smart Key VI to
tell ADAM that you've finished and to return to the original set of Smart
Key labels.

To set and remove tabs for various indentations, begin by pressing
Smart Key I, MARGIN/TAB/ETC. Next press Smart Key IV, labeled TAB.
Use the left and right cursor-control keys to move the cursor to the points
at which you want to set tabs or remove existing tabs with Smart Keys 111
and IV. Notice that ADAM has several preset tab positions. You can
remove these if you wish. Carefully watch the horizontal scale at the top of
the screen to see exactly where you are on the page. Pressing Smart Key
V will erase all of the tabs that have been set. Smart Key VI again tells
ADAM that you have finished.

Bera and Smith • ~~

You can also tell ADAM the size of paper you plan to use by pressing
Smart Key I again. This will let you choose between letter size and legal
size paper.

If you press Smart Key V, LINE SPACING, after pressing Smart Key I,
MARGIN[fAB/ETC, you will see three labels-UP, DOWN and DONE. In
addition, you will see 1 (the number one) in the lower left region. This
number is the current line spacing. ADAM will print single space unless
you insert carriage returns between the lines. Pressing Smart Key IV twice
will change the 1 to 1 ½ and then to 2. ADAM will then print double space.
You can vary the spacing in increments of ½ from 1 to over 50. It won't
affect the way the text looks on the screen; it will affect only the printed
copy.

Another label that appears after pressing Smart Key I corresponds to
Smart Key VI and is END PAGE. This causes a small character, a light
colored "E" in a dark square, to appear at the cursor's location in the text.
When ADAM sees this character while printing, it knows that the end of
the page has arrived and that the next word should appear at the
beginning of the next page. You can use the backspace or delete keys to
remove this character, just like any usual character.

Screen Options
When you press Smart Key 11, you will have the option of turning off

the sound-the beeps ADAM makes when you press a key-either
partially or fully. The PARTIAL SOUND option (Smart Key IV) turns off all
sound except when a Smart Key is pressed. FULL SOUND (Smart Key V)
is ADAM's normal mode when first turned on. NO SOUND (Smart Key Ill)
is self-explanatory.

Smart Key II offers you COLOR SELECT, which will provide you with
several options pertaining to the color of the screen and the color of the
text.

Smart Key VI, labeled MOVING WINDOW, will cause the black roller
at the bottom of ADAM's screen to disappear. The text will now be
arranged like a printed copy, with the exception of the line spacing. It is
called a moving window because a line of text can extend beyond the
screen where it can't be seen. You can use the cursor controls to move
along the line of text and, as new words appear on one end of the line,
words disappear on the other. It is as if you are physically moving a
window on a wall in order to see something behind it. While you are in the

40 • ADAM: The System

moving window mode, try this experiment: Set the left margin to 1 and the
right margin to 80. Move the cursor over several lines of text that you don't
particularly want to keep, or press the key marked HOME. Then try to
print the text. On some machines, all but the first line of text will be
destroyed. This is what computer users call a bug-a glitch in the
program.

Getting Out of Trouble
ADAM has two keys that might save you trouble someday:

<ESCAPE> and <UNDO>. These keys cancel commands previously
given. <ESCAPE> is used to interrupt. It must be used before pressing a
Smart Key labeled DONE in a sequence of commands. <UNDO>, on the
other hand, actually reverses the effects of several commands even after
they've been executed. It must, however, be pressed immediately after
the command, before pressing another key. <UNDO> undoes the
commands that remove text-BACKSPACE, DELETE and CLEAR. The
UNDO and ESCAPE keys can lengthen the useful life of your ADAM,
since computers that have been thrown across the room don't usually
function for very long.

CHAPTER4
ADVANCED WORD PROCESSING

Moving Text
One of the most important features of any word processing system is

the ability to move or rearrange blocks of text. ADAM can quickly perform
this task; you need only give the proper commands.

To start, choose any text that you want to rearrange. For example,
suppose you typed the following:

Violets are blue.
Roses are red.

Now suppose you'd like to reverse the position of these sentences so that
they read:

Roses are red.
Violets are blue.

The only way you can achieve this on a conventional typewriter is by
erasing at least part of what you've typed or by retyping the entire page.
But with SmartWriter, it's possible to rearrange text quickly and neatly on
your screen before anything is printed on paper. Using the MOVE/COPY
command key, you can instruct ADAM to erase a sentence from the
screen, store it in memory, and reposition it at any other point in your text.
What follows is a list of the steps needed to do this.

1. Press the command key MOVE/COPY at the upper right of
ADAM's keyboard. This gives a new set of Smart Key labels.

2. Press Smart Key V, labeled MOVE. The Smart Key labels will
change again.

3. Using the cursor-control keys, move the cursor until it is under the
first character of the block of text you wish to move. In this case, we'll be
moving the sentence "Violets are blue," so move the cursor to the "V" in
"Violets."

4. Press Smart Key IV, labeled HI-LITE FIRST. This will underline, or
highlight, the "V." If you make a mistake and accidentally highlight the
wrong character, you can press Smart Key V, labeled HI-LITE ERASE,
and the letter will no longer be underlined.

5. Move the cursor to the last character of the block to be moved. Be
sure that you can still see the character you highlighted in step 4. If the
block of text is so large that you can't see the beginning and end of the
block at the same time, you'll have to break the block into smaller pieces
and move each piece separately. In our example, this would mean
placing the cursor under the triangular symbol (the carriage return
character) following the word "blue. 11

6. Press Smart Key V, labeled HI-LITE LAST. Notice that all of the
text between the two highlighted characters disappears from your
screen. The block of text has been stored in ADAM's memory, awaiting
your instructions indicating where you want the text to reappear. Pressing
ESCAPE/WP at this point has no effect.

7. Move the cursor to the position where you want the beginning of
the stored text to appear. This time, put the cursor one line below the "R"
in "Roses. 11

8. Press Smart Key V, MOVE, to make the text reappear. When it
returns, it should look exactly as it did formerly, except that the entire
block will be located at its new position, as follows:

Roses are red.
Violets are blue.

With practice, you will be able to rearrange paragraphs, sentences
and phrases in a matter of seconds. This procedure can also be used to
improve the organization of your writing as you reorganize your thoughts.

Copying Text
You noticed that when you moved the sentence in the preceding

example, it disappeared from its original location. Suppose that you are
particularly fond of violets and that you did not want the sentence "Violets
are blue" to disappear. That is, instead of erasing and moving the
sentence, you wanted to copy it and place the copy elsewhere. One
result might look like this:

Violets are blue.
Roses are red.
Violets are blue.

Copying text follows a procedure similar but not identical to that for
moving text. Here are the steps involved:

44 • ADAM: The System

1. Press the command key MOVE/COPY at the upper right of
ADAM's keyboard. The Smart Key labels will change.

2. Press Smart Key VI , labeled COPY. The Smart Key labels will
change again.

3. Using the cursor-control keys, move the cursor until it is under the
first character of the block of text you wish to copy. In this case, we'll be
copying "Violets are blue," so move the cursor to "V" in "Violets."

4. Press Smart Key IV, labeled HI-LITE FIRST. This will underline, or
highlight, the "V." If you make a mistake and accidentally highlight the
wrong character, you can press Smart Key V, labeled HI-LITE ERASE,
and the letter will no longer be underlined.

5. Move the cursor to the last character of the block to be copied. Be
sure that you can still see the character you highlighted in step 4. If the
block of text is so large that you can't see the beginning and end of the
block at the same time, you'll have to break the block into smaller pieces
and move each piece separately. Again, this would mean placing the
cursor under the triangular symbol (the carriage return character) follow
ing the word "blue."

6. Press Smart Key V, labeled HI-LITE LAST. In doing so, you etch
the block of text to be copied into ADAM's memory.

7. Move the cursor to the position where you want the beginning of
the block of text to be duplicated. This time, put the cursor one line below
the "R" in "Roses."

8. Finally, press Smart Key V, COPY, to copy the text and make it
reappear where the cursor resides. When ADAM has finished, the text
should look exactly as it did formerly, except that another sentence,
identical to the first one, now appears under "Roses are red." You now
have three sentences- the original two and a copy, as follows:

Violets are blue.
Roses are red.
Violets are blue.

Suppose that you not only like violets, but are absolutely infatuated
with them. Repeat steps 7 and 8 several times and you will get something
like this:

Violets are blue.
Roses are red.
Violets are blue.
Violets are blue.
Violets are blue.
Violets are blue.
Violets are blue.

When you've finished making violets, you simply proceed by going
on to step 9.

9. Press Smart Key VI, DONE. The original Smart Key labels should
reappear at the bottom of the screen.

It is important to remember that any highlighting done before you
press <MOVE/COPY> will disappear, which is not how <DELETE>
works. The characters will still be there, but the colored highlighting line
beneath the text will no longer be present.

Searching for Text
Imagine that you are nearly finished typing a 20-page paper on the

advantages of having your own computer. You remember that some
where in your text you used the phrase "roses are red" as an illustration of
one of your points. All of a sudden you decide that you want to review
your example. You are now faced with the problem of scrolling back
through your document, page by page, until you find the phrase. Why not
let ADAM do the tedious work for you?

Notice that the function corresponding to Smart Key Ill is labeled
SEARCH. This command tells ADAM to locate any character, word or
phrase (up to a maximum of 32 characters). ADAM will do your searching
if you follow these simple steps:

1. Move the cursor to the beginning of the document or page that
you want ADAM to inspect. Always remember that ADAM searches from
the cursor position to the end of the document. For example, if you were
to place the cursor at the beginning of page 7, ADAM would ignore
pages 1 through 6 and search from the beginning of page 7 to the end of
the text.

2. Press Smart Key 111, labeled SEARCH. The labels will change and
ADAM will ask you to type in the word or phrase for which you are looking.

3. Type in the character, word or phrase to be found. In this case,
you could type "roses are red, " " rose," " red," or even "RED" (without the
quotation marks or commas). Type "are red" for now. Notice that ADAM
ignores differences in capitalization when searching. Also, ADAM ac
cepts everything you tell it quite literally. If you told ADAM to search for all
occurrences of the word "red," ADAM would find "red" even when it
appears as part of another word, as in "redwood," "redhead," or
"scared." A trick often used to prevent this from happening is to precede
the word for which ADAM is searching by a space. Typing " red" instead
of "red" will prevent ADAM from locating the "red" in "scared" but,

46 • ADAM: The System

unfortunately, not in "redwood." Typing "red." would locate all occur
rences of the word "red" that are followed by a period. Be as specific as
possible; for instance, "roses are red" will probably not occur as part of
any other word or phrase.

4. Press Smart Key VI , which is labeled START SEARCH. The cursor
will move to the first occurrence of the phrase "are red" and the labels will
again change. If ADAM has located a phrase other than the particular
one you had in mind, press Smart Key IV (labeled SEARCH NEXT) until
ADAM finds the phrase.

5. Press Smart Key VI, DONE. The original Smart Key labels will
reappear, and you can begin editing your text once more.

Replacing Text
Suppose that you remember that you'd promised to write a long letter

to your friend Carla. You have only a few minutes before the postman will
arrive at the mailbox around the corner. Realizing that you'd written to
your friend Sheila the day before and had saved the letter, you decide
that your only chance to meet the deadline is to use that letter and
change the name wherever it occurs. Or suppose, given our old " roses"
and "violets" example, you decide that roses should be white rather than
red. ADAM can easily solve either task if you follow these instructions:

1. Move the cursor to the beginning of the document or page that
you want ADAM to inspect.

2. Press Smart Key 111 , labeled SEARCH. The labels will change, and
ADAM will ask you to type in the word or phrase for which you are
searching.

3. Type in the character, word or phrase to be found. For now, just
type "are red."

4. Press Smart Key VI, which is labeled START SEARCH. The cursor
will move to the first occurrence of the phrase "are red" and the Smart
Key labels will again change.

5. At this point you have three choices: (a) You can tell ADAM to
replace every occurrence of the phrase "are red" from this point to the
end of the document automatically; (b) you can decide to replace the
phrase that ADAM has just found for you and retain the option to control
the replacement of each subsequent occurrence of the phrase for which
ADAM is searching; or (c) you can command ADAM to leave this
occurrence unaltered and go on to the next one, again with the option of
changing subsequent occurrences.

R A rfl .::inrl ~rnith . 11 7

5a. To replace this and all subsequent occurrences of the phrase
automatically, press Smart Key VI (labeled REPLACE ALL). ADAM will
then ask you to provide the replacement text. In this case, type "are
white." ADAM will replace every subsequent occurrence of "are red" with
"are white," and then return to the original Smart Key labels.

5b. By pressing Smart Key V, labeled REPLACE, you are telling
ADAM to replace only this occurrence of the phrase "are red." If you
choose this option, you can't choose the REPLACE ALL option unless you
start from scratch. You will, however, retain the choice of replacing or not
replacing all subsequent occurrences.

5c. If you want to leave this occurrence unchanged and tell ADAM
to find the next one, press Smart Key IV, SEARCH NEXT. ADAM will
search for the next occurrence of the phrase and again provide you with
the option of changing it or leaving it unaltered.

6. When you've finished making your desired replacements in the
text, press Smart Key VI, DONE. You are then returned to the original
Smart Key labels. Many times you may find yourself typing the same long
phrase or word again and again in a document. For example, you may be
typing a paper on Greek literature and often refer to the writer
Aristophanes. A shortcut you might like to remember is to type an
abbreviation throughout the document. Let's use the letters "AAA" in this
case. When you finish, go back to the beginning and tell ADAM to search
for each occurrence of your abbreviation, AAA in this instance, and to
replace it with the desired word, Aristophanes. You'll find that this little
trick can really save you some time. To avoid confusing ADAM, try to use
odd combinations of letters that don't ordinarily occur in the language,
such as one letter appearing three times as in this example.

Superscripts and Subscripts
Having successfully completed your paper on Greek literature, you

decide that it's time to complete a paper on your science project. You
realize that in this paper you will need to type several formulas, such as
H2SO4 or e = mc2. On a typewriter, you must shift and roll the paper in
order to enter the characters that appear above and below the normal
line of type. The 2 in e = mc2, which appears above the rest of the script,
is called a superscript. Superscripts are often used in reports to refer to
footnotes. The 2 and the 4 in H2SO4 are called subscripts since they lie
below the rest of the script. Fortunately, you can tell ADAM to print a
superscript or subscript and forget about the headaches associated with
moving the paper up and down or back and forth.

48 • ADAM: The System

You can do this very easily by following these instructions:
1. Type until you come to the point where you want a superscript or

a subscript to appear. For example, type the e = me of e = mc2.
2. Press Smart Key VI, labeled SUPER/SUBSCRIPT. The labels will

change.
3. Press Smart Key VI, labeled SUPERSCRIPT, if you want the

following characters above the line, or Smart Key V, SUBSCRIPT, if you
want the characters that follow to appear below the line. The labels will
change again. A special superscript character (an upside down L facing
right) or subscript character (an L shape facing right) will appear on the
screen in the text.

4. Type in the characters that you want to be superscripted or
subscripted at this place in the text. This, for example, could be the 2 in
e = mc2.

5. Press Smart Key VI, DONE. The original labels will reappear at the
bottom of your screen, and another special character will appear on your
screen just after the text that you superscripted or subscripted. The
ending superscript character resembles an upside down L facing left,
and the ending subscript character looks similar to a left-facing or
backward L.

In the above examples, you never see the sub- or superscripted
characters on your screen. All you see are the special symbols for
superscript and subscript. But these symbols act as messages to your
printer to do the necessary subscripting or superscripting. And they're
messages to you as well that the writing below and above the line is being
done.

One final point. Suppose that you had originally just typed "e = me"
and later, after typing other words beyond the equation, decided to add
the superscript, 2. It's no longer possible simply to return to your equation
and follow the regular superscript procedure outlined above. Instead,
you'll have to insert the superscript using the insert procedure. So start
the insert routine by pressing the INSERT key. When ADAM opens space
for your insertion, follow steps 2 through 5 above. Then press Smart Key
VI, DONE. The characters you typed should be inserted in the proper
place. It's smooth sailing from here on. You are now an expert with
SmartWriter.

Berg and Smith • 49

CHAPTERS
BEGINNING WITH SmartBASIC

In an ideal world, computers like ADAM would speak English. We
would use the same words to talk to ADAM that we use to converse with
family and friends. If, for example, we wanted ADAM to count from 1 to
100, we would say precisely that-"Count to 100, you extraordinary
machine!"-and ADAM would respond in kind. Similarly, if ADAM wanted
to send a message to us, it too could use normal speech, saying things
like "That's quite a hefty assignment you've given me," or "I'm working on
your problem." Computing would be that easy if ADAM spoke English.

Unfortunately, this ideal computer world is not yet upon us. Although
enormous strides have been made in the area that scientists call artificial
intelligence, which would among other things enable computers to
speak, understand and interpret regular English sentences-the fact
remains that for most computers, including ADAM, English is far too
complex a language to use. Not only are there millions of words, but there
are equally many nuances-shades of meaning-that ADAM would have
to understand to speak English. Even if we could teach ADAM the varied
meanings of millions of English words, it's unclear if ADAM could learn
English grammar. After all, many foreigners have trouble learning it.
Imagine how difficult it would be for a machine like ADAM to learn!

This chapter is about another type of language, one so precise and
easy to use that both you and ADAM can understand it. Indeed, the
language we'll be discussing was designed especially for computers like
ADAM more than thirty years ago by scientists at Dartmouth College in
New Hampshire. They concluded that everyday English simply wouldn't
suffice for the computing machines of the time-English was simply too
complex. Instead of using everyday English to talk with computers, the
Dartmouth scientists designed a language that used many familiar
English words and sentences but lacked the subtleties or embellishments
that would confuse a computer. That first computer language, called
BASIC, has been honed to perfection, and nearly all computers under
stand it. The version of BASIC that ADAM speaks is called SmartBASIC.
Although SmartBASIC may seem foreign and cryptic to you at first-as
would any new language-a little further description should dispel any
concerns you have.

RPrri :::mrl ~mith . ,::;: 1

For starters, SmartBASIC uses many words you already know. For
example, if you want SmartBASIC to print, you use the command PRINT.
Similarly, if you want SmartBASIC to skip to another location as it
processes information, you use the command "GO TO." To have ADAM
read a list of numbers, use READ, and if you want to input those same
numbers from ADAM's keyboard, use INPUT. These and other Smart
BASIC commands will be discussed in detail later in the book. For now,
though, take pleasure in the fact that most of the commands in Smart
BASIC sound and act as you'd expect.

This, however, is not the main feature that distinguishes SmartBASIC
from other versions of BASIC. Rather, what sets SmartBASIC apart is that
it will tell you if you have made an error in your work, and it will inform you
of y·our mistake immediately, before you have worked for hours on a
particular task. If, for example, you misspell a command (and therefore
ADAM does not recognize it), SmartBASIC will tell you at once where and
how you've blundered. SmartBASIC may even suggest ways to fix your
error. The language thus earns the name SmartBASIC, in recognition of
its ability to pinpoint errors early on and to suggest ways of improving.
This is in contrast to many other versions of BASIC that wait until you're
done with all your work before spotting an error.

Being a language, SmartBASIC also has a grammar. Just as English
grammar lays out the rules and procedures for sentence structure and
word usage, SmartBASIC's grammar sets the rules for writing computer
programs. A program is simply a set of instructions in SmartBASIC that
tells ADAM what to do.

All this is not to say that SmartBASIC is the same as English. It's not.
Certainly you will never hear people speaking SmartBASIC. And you will
never see SmartBASIC written in a newspaper or magazine. But you will
see SmartBASIC (or another version of the BASIC programming
language) being used widely by beginning and advanced computer
users to communicate with their machines.

While many of the words and phrases used in SmartBASIC are
familiar, there are ~lso far fewer phrases than there are in English. The
language, in short, has been shrunk. There are no adjectives or adverbs,
no modifiers or other embellishments that ordinarily enrich a language.
Instead, SmartBASIC consists of only about a hundred choice words.
Precise, direct and unequivocal, these words, called commands, do
nothing but tell ADAM what to do. Indeed, if there is a critical difference
between everyday English and programming in SmartBASIC it is this:
While everyday English relies on subtleties and other shades of meaning
to convey a thought, in SmartBASIC the emphasis is on precision. Every
word in a SmartBASIC program has a specific definition and always

means the same thing. Each SmartBASIC phrase also retains a meaning,
no matter how it is used in a program. One could say that English deals in
greys, SmartBASIC in black and white. English is mutable and subjective,
SmartBASIC fixed and objective.

Some people, of course, take issue with having to speak to ADAM in
such a rigid tongue. Why, they ask, should a language like SmartBASIC
have such hard-and-fast rules? And why no adjectives or adverbs? The
answer is that it could not be otherwise. Since ADAM is a machine made
by man and cannot think for itself, it cannot be asked to interpret the
English language as we know it. The best we can hope for is the ability to
talk with ADAM in a clear, direct, unambiguous way that ADAM under
stands, even if it means using a language far less sophisticated than
English. We think SmartBASIC fits this bill well.

In fact, we believe that you'll find SmartBASIC to be an elegant,
descriptive language-despite what others have called SmartBASIC's
simple "lockstep ways." SmartBASIC can be enormously powerful in
uses, ranging from balancing your checkbook or keeping track of names
and addresses to performing complicated mathematics. All it takes to use
SmartBASIC is patience and a willingness to learn.

Consider yourself to be studying a new language-in this case, a
computer language. As you add new SmartBASIC words and phrases to
your "vocabulary," try writing them down to remember them easily. Better
still, try practicing your new skills by using SmartBASIC phrases in
programs, just as you would practice new words if you were learning a
new language, such as French or Spanish. Your goal should be to
become fluent in SmartBASIG-to learn all its words and phrases. It's
only when you know SmartBASIC well that you can speak to ADAM
effectively and get the most out of its powerful electronic mind.

Getting Started
If you had no trouble beginning work with SmartWriter, chances are

you will find getting started with SmartBASIC easy, too. To begin, turn
ADAM on, place the SmartBASIC digital data pack into ADAM's tape
drive and press the reset button on top of the memory console. The drive
will whir as the tape advances. This means ADAM is loading SmartBASIC
into its electronic brain so that it can accept your commands. You'll know
ADAM is ready to receive your instructions when a bracket (]) appears on
the screen. You're now ready to utter your first words in SmartBASIC.

Bero and Smith • 5'.'i

Begin by typing the word NEW followed by the carriage return key.
The NEW command tells ADAM you are about to input a new set of
instructions--a new program. Indeed, whenever you want to begin a new
program, simply type NEW and the bracket will reappear on your screen.
You can even type NEW in the middle of a program, and ADAM will
disregard what you've already written and begin again.

Since computers were created to solve difficult math problems at
fantastic speeds, it seems only appropriate that our first program should
involve numbers. Let's get started by writing a simple program to add
three numbers: 457, 821 and 1021000. After typing NEW, try inputing the
following (don't type the bracket (]), it should already appear on your
screen):

]new
]10 print 457 +821 + 1021000
]20 end

This program contains two separate statements, and each statement
directs ADAM to do a specific job. The first line, labeled 10, consists of
SmartBASIC's PRINT command followed by the three numbers we wish
to add. The PRINT command simply tells ADAM to print on the screen
whatever follows-in our example, the sum of three numbers. So when
ADAM encounters line 10, it thinks: "Take the numbers 457, 821, and
1021000, add them together, then display the result on the screen."
Since ADAM knows how to recognize numbers and perform arithmetic, it
has no problem doing the calculating job. Once ADAM is done comput
ing, it proceeds to line 20, where the END command indicates that it has
reached the end of your program. It's that simple.

If you try typing in this program on ADAM's keyboard, however, you'll
find that ADAM will sit there listlessly once you're done. You can bang on
the keys, plead and cajole, but ADAM will stubbornly refuse to give you
the answer you seek. Is there anything wrong? Probably not. Is ADAM
lazy? That's probably untrue also. The problem is that you haven't told
ADAM to execute your program-to read through it and follow each
instruction line by line. What you need is a way to get ADAM started.

In SmartBASIC this is achieved through the RUN command. RUN
tells ADAM to read through your program's instructions in order and
follow them. Try typing RUN, followed by a carriage return, after you've
typed in our model program. If all goes well, a solution to our equation
should appear on the screen:

1022278

54 • ADAM: The System

Sure enough, 1022278 is the number you're looking for. It's the sum
of our original numbers: 457, 821, and 1,021,000. Not only has ADAM
added these numbers as requested and printed them on your screen, it
has done so at breakneck pace-certainly faster than you could add the
numbers by punching them into a pocket calculator. Later, we'll be doing
far more complex calculations with SmartBASIC, and you'll see that
ADAM still works amazingly swiftly when the jobs get big.

What are the lessons that you should take away from this first
program? For starters, you should have an elementary understanding of
ADAM's PRINT command. Just to review, PRINT tells ADAM to print on
the screen whatever follows-in our example, the sum of three numbers.
Since PRINT is one of the most widely used commands in SmartBASIC,
we think it's worth learning early on. You should also remember that the
END command in SmartBASIC informs ADAM it has reached the end of a
program. And by typing RUN once you've finished writing a program, you
tell ADAM to execute your program's instructions.

You also have the option of giving ADAM commands one at a time
and getting ADAM's response without delay and without typing RUN. For
instance, type:

]print 457+ 821 +1021000

ADAM responds with:

1022278

Since ADAM responds immediately to your command, it is said to be
working in immediate mode. No line numbers or RUN command are
necessary. The major disadvantage of the immediate mode is ADAM's
inability to save those commands for future use. The immediate mode is
fine for using ADAM like a big calculator, but it doesn't really take
advantage of ADAM's full potential.

When you typed the numbers at the beginning of the lines, you were
telling ADAM to wait until you gave the RUN command before following
your instructions. This is called program mode, since a list of instructions
with line numbers constitutes a program for ADAM.

You'll notice, too, that every line in our SmartBASIC program begins
with a number- in our example, the numbers are 10 and 20. These serve
a dual purpose. First, they signal to ADAM that you are starting a new line.
But more important, it's only by reading the numbers at the beginning of
each line that ADAM knows the order in which to follow your instructions.
ADAM executes the line with the lowest number first. It then proceeds to
follow the command with the next highest number. In our example above,
ADAM would execute line 10 first, then line 20, regardless of the order in
which the lines were typed.

n _ __ - - J '"'·- - ·• •

Let's get a fresh start here. Type NEW to erase any old programs,
and then type HOME. The HOME command erases the screen without
affecting any of the programs.

Suppose you wrote a program based on one of the most inspiring
lines from John F. Kennedy's inaugural address. If you wrote a program
like the one below, you might think you would confuse ADAM, since it
looks as if you have written the late President's hallowed words in reverse:

]20 print "Ask what you can do
for your country."

]10 print "Ask not what your co
untry can do for you"

]30 end

However, ADAM wouldn't be confused at all. Even though ADAM
wasn't around to hear the President's address, he still is able to read the
lines in numbered order, beginning with line 10 and then moving on to
line 20. ADAM would in effect rearrange the program, thinking of it exactly
as President Kennedy spoke it, as follows:

]10 print "Ask not what your co
untry can do for you"

]20 print "Ask what you can do
for your country."

]30 end

Notice that when you get to the right edge of the screen, ADAM
displays the letters that you've typed on the following line. Even though
the word "country" appears to be broken, it really isn't. It's• only a
cosmetic flaw caused by the lack of anything akin to word wrap in
SmartBASIC. It can be fixed by using several shorter PRINT statements.

Just to repeat: Whenever you write a SmartBASIC program, each line
must have a line number. These tell ADAM the order in which to read
instructions. ADAM reads the line with the lowest number first, then
proceeds to the lines with higher numbers. Although you can use any
whole numbers to order a SmartBASIC program, it's probably best to use
multiples of 10, just as we did above. A brief example should illustrate
why this is a good idea. Suppose you've written the following program:

]new
]10 print 724+958+535
]20 end

S6 • ADAM: The Svstem

If you type RUN, ADAM will immediately put its wondrous electronic
mind to work and deliver the answer you seek: 2217. But suppose you
wanted ADAM to perform another calculation before ending-to add,
say, 345, 1236 and 627. In SmartBASIC, you could do this easily and
neatly by writing a separate instruction within the same program,
numbered 15.

In other words, despite the fact that you've finished typing your
original program, you could still squeeze in a line to perform the second
calculation you want. After the end of your original program, simply type:

] 15 print 345+ 1236+ 627

Although line 15 is standing by itself and may appear not to be part
of your program, it is. To see that this is the case, try typing the word LIST
followed by a carriage return. The LIST command tells ADAM to list out, in
numbered order, the individual lines of your program. If all goes well,
ADAM should print on the screen the following:

]10 print 724+ 958+535
]15 print 345+ 1236+627
]20 end

If you tell ADAM to run, you'll get two numeric answers, exactly as the
program requests. Your output on the sceen should be as follows:

2217
2208

not dispJayed

(The sum of 724, 958, and 535}
(The sum of 345, 1236, and 627)

There is, finally, one other lesson we think you should garner from
this primer on programming in SmartBASIC. You'll notice that in all our
programs every line ends with a carriage return. Although there are
certain exceptions to this rule (which we'll tell you about), it's generally
true that all lines in SmartBASIC must end with a return, regardless of the
command on the line. By typing a return, you tell ADAM that you have
finished an instruction and are ready to begin a fresh one. In fact, ADAM,
being a stubborn creature often set in its ways, won't read what you've
typed until you hit a carriage return. Unless you type a return, it's as if you
hadn't typed a line at all. It's important, therefore, to type a return each
time you wish to begin a new line, and then to start that new line with a
fresh line number.

Re:,rr, ~nrl Qmith . r:::..,

Arithmetic Calculations
In your first program, you learned to add numbers using Smart

BASIC's PRINT command. As part of this, you learned the meaning of the
LIST, END, NEW, and RUN commands. It turns out that performing any of
the other arithmetic functions in SmartBASIC can be equally easy,
provided you learn some simple conventions.

Suppose, for example, you wanted to subtract one number from
another. Consider the following program:

]10 print 7231 - 4326
]20 end

After you type RUN, ADAM should respond by computing the
difference: 2905. In other words, subtraction is performed exactly as you
would do it with pencil and paper, using a minus sign (which appears on
ADAM's keyboard just above the P). ADAM even understands negative
numbers. Try the following program:

]10 print 4305 - 7462
]20 end

When you type RUN, ADAM should answer with a negative solution:
-3297. Although there are limits to the size of numbers ADAM can
understand, for most uses both negative and positive solutions can get as
large as need be.

Now suppose you'd like to multiply numbers using SmartBASIC.
Ordinarily, you'd use a conventional multiplication sign- x-to find a
product. But not with SmartBASIC. Instead of an x you use an asterisk (*)
to indicate multiplication, like this:

]10 print 2*4*6
]20 end

After you tell ADAM to run the program, the product, 48, should
appear on your screen. Virtually the same procedure is used for division,
except that you use a slash (/) to tell ADAM you'd like to divide. The slash
key appears in the same place on ADAM's keyboard as the question
mark. A program involving division would look like this:

] 10 print 3432/8
]20 end

After you type RUN, ADAM will again offer up a solution, and as
usual in a flash. This time the answer is 429.

58 • ADAM: The System

Although the procedures for using SmartBASIC for arithmetic vary
depending upon whether you're doing addition, subtraction, multiplica
tion or division, there are also some common rules that apply regardless
of the operation.

For example, you've probably been mystified by the fact that none of
the numbers in our examples contain commas, even very large numbers.
That's because ADAM does not understand commas in numbers. The
following table gives some examples of how numbers should be typed in
SmartBASIC:

Number

3,000
1,234,567
2,000,000

SmartBASIC Version

3000
1234567
2000000

It's also important that you know something about scientific
notation-a convenient way of expressing extremely large or small
numbers in the small space of a computer screen. The reason scientific
notation is important is that ADAM uses scientific notation when numbers
are too big to fit on the screen. Although this happens only rarely, you'll
know ADAM has reached this point and is using scientific notation when
numbers include an E. For example, suppose ADAM says the answer to a
problem is:

7.52345E9.

The "E9" means that you should move the decimal point 9 spaces to
the right. Instead of being about 7.5, the number listed above is really
7523450000. Similarly, an E followed by a negative sign would mean
move the decimal point to the left. For example, 8.546E-3 means
.008546, and 4.732E-5 translates into .00004732. It's that simple.

Finally, since you already know that ADAM reads program lines in
numbered order, you'll want to know the order in which ADAM conducts
arithmetical operations within a specific line. If, for example, an equation
contains a number of operations-say, addition, subtraction and
multiplication-which will ADAM perform first? Fortunately, scientists at
Coleco have designed ADAM so that it follows essentially the same rules
that schoolchildren learn. The procedure goes like this:

First ADAM looks for parentheses. It performs operations inside the
parentheses before anything else.

Next ADAM performs all multiplication and division, always working
from left to right.

Finally ADAM performs addition and subtraction, again working left
to right.

Although all this may seem cryptic at first, a few examples should
make things clear and put you perfectly at ease:

Suppose you write a program like this:

]10 print 6*7+4/2+2
]20 print 4/2*5+2-7
]30 end

Many people would be baffled trying to solve such twisted equa
tions, but not ADAM. When you tell ADAM to run this program, it will start
by computing the value of the equation in line 10. Using the rules stated
above, it will look first for parentheses. Finding none, ADAM will then
perform multiplication and division, left to right, by computing the value of
6*7 and 4/2. The last step will be to add the results together. It will add 42
to 2, and then it will add 2 again. The final result will be 46.

In the equation on line 20, ADAM will again start by seeking
parentheses. Finding none, it proceeds to multiplication and division. It
will divide 2 into 4, then multiply the result by 5 to get 10. Having
completed multiplication and division, ADAM can now proceed to the
lower-priority operations--addition and subtraction. To 10 ADAM will add
2, then subtract 7, exactly as the equation says it should. The final result
will be 5.

One easy way to think about all this is to imagine you have placed
invisible parentheses in the equations above, following all the rules for
order of operations. In fact, from ADAM's view, the parentheses are there;
they just haven't been typed in.

You can, therefore, think of line 1 O not as a confusing tangle of
numbers and mathematical symbols, but as an ordered, easy-to
understand equation with parentheses--in short, the type of equation to
which you're accustomed. Just make believe the parentheses were there.

Instead of thinking of line 10 like this:

]10 print 6*7 +4/2+2

You can think of it like this:

]10 print (6*7) + (4/2)+2

And you can consider line 20 to be equivalent to the following:

]20 print (4/2*5)+2- 7.

By imagining these fictitious parentheses, you can understand the
"thinking" that ADAM goes through when it executes your programs. You

60 • ADAM: The Svstem

understand the logic or method that ADAM follows, the computer's
precise order of operations when it comes to arithmetic. Reason emerges
from the chaos.

Displaying Your Results
So far you've learned about using ADAM as a high-priced calculator,

albeit an extremely fast one. Working with SmartBASIC's PRINT com
mand, you are now able to have ADAM perform virtually any mathemati
cal computation you desire, whether it involves addition, subtraction,
multiplication or division. Knowing the rules that ADAM follows for order
of operations, you can calculate answers even to very complicated
problems.

Now let's see if ADAM can understand words. Suppose you'd like
ADAM to print a line from the Broadway hit musical Fiddler on the Roof, as
follows:

"Matchmaker, matchmaker make me a match. Find me a find. Catch
me a catch."

To get ADAM to print text, again use the PRINT command, but with
one important difference. Whereas earlier you followed the word PRINT
with the numbers you wanted to perform calculations on, to print text you
must enclose it in quotation marks. Try typing the following program:

]new

]10 print "Matchmaker, matchmak
er, make me a match. Find me a
find. Catch me a catch."

]20 end

After typing RUN, you won't hear music flowing, but ADAM will belt
out the words from the song on your screen:

]run

Matchmaker, matchmaker, make me
a match. Find me a find. Cate

h me a catch.

(Notice that the breaks in the words always occur at the ends of the lines,
and the breaks are different in the statement you typed than in ADAM's
response.)

Berg and Smith • 61

Now type NEW and try the following program:

]10 print "5*7"
]20 end

If you type RUN, you should be surprised by your new results.
Whereas a similar program would have solved the equation and printed
out a result-namely the product of 7 and 5, which is 35-in this case
ADAM will print on the screen precisely what's inside the quotation
marks. After typing RUN, you should get the following:

5*7

The reason ADAM does this (rather than compute the product of 5
and 7) is that it considers anything inside quotation marks to be words
and prints them exactly as you originally wrote them. Even more
surprising, ADAM will print material inside quotation marks without
criticism, ignoring errors of grammar, spelling, logic and punctuation. All
quoted material is the same to ADAM, sensible or not. The following
program illustrates:

]10 print "2+2=5"
]20 end

Of course, knowing that two and two is four, not five, is kids' stuff. But
matters are not that simple for ADAM. What's important from the
computer's point of view is that the equation is enclosed by quotation
marks. It thus becomes text in ADAM's eyes. The result: ADAM will print
the equation on the screen as written. It will display 2+2=5.

There is, however, an answer to this somewhat peNerse logic, this
twisted arithmetic in which 2+2=5. Although we cannot teach ADAM to
fix incorrect numbers or faulty equations inside quotation marks, we can
write a program in which all computations appear outside quotes. This
has the effect of putting ADAM's electronic brain to work rather than
having the computer simply return verbatim what it was given. An
illustration shows how this would work. Consider the following program:

]10 print "The sum of 2 and 3 i
s"2+3

]20 print "The difference of 35
and 20 is" 35-20

]30 print "The product of 6 and
7 is "6*7

62 • ADAM: The System

]40 print "The quotient of 100
divided by 10 is 11 100/10

]50 end

When you instruct ADAM to execute this program by using the RUN
command, the answer will be much more to your liking. Beginning with
line 10, ADAM will print precisely what's inside the quotation marks. Then
it will compute the sum of 2+3 and print the result. You will see the
following:

The sum of 2 and 3 is 5

ADAM will go through the same sort of procedure for lines 20, 30 and
40. It will print:

The difference between 35 and 2
0 is 15

The product of 6 and 7 is 42

The quotient of 100 divided by 1 0 is 1 0

The basic point should now be clear. The PRINT command is one of
the most powerful and widely used instructions in SmartBASIC. It can be
used to display numbers, words, and any solution that ADAM has found
as a result of solving an equation. If you use quotation marks, you're
instructing ADAM to return verbatim what you've stored inside them. If
you don't use quotation marks, you're telling ADAM that what follows is
numerical, and it may call for some calculations.

For now, we'll say that words to be printed on the screen must be
inside quotation marks. That way ADAM considers them words and won't
try to perform numerical calculations on them. Here is another example.

]new

] 10 print "For just 11 3.98 " you
can buy a machine that in more
expensive stores would cost nea
rly double, or 11 3 .98*2 " ."

]20 end

That's quite a mouthful for one PRINT command, but it's perfectly
clear to ADAM. After telling ADAM to run the above program, the result
you'll get should be as follows:

Bera and Smith . ~~

For just 3.98 you can buy a mac
hine that in more expensive sto
res would cost nearly double, o
r 7 .96.

You'll notice that ADAM printed everything in quotation marks exactly
as it appeared. Any necessary calculations, for example, the calculations
at the end of the sentence in which 3.98 is multiplied by 2, were
performed by ADAM because the numbers involved did not appear
within quotation marks. Since we placed the numbers at the end of our
sentence, the result of the computation appeared just where we wanted
it.

Congratulations! You've mastered an introduction to SmartBASIC. In
the next chapter, we'll be expanding your knowledge by describing
numerous other commands used in SmartBASIC. Then we'll be offering
you some helpful programs for the home, office, or just for fun.

64 • ADAM: The System

CHAPTERS
VARIABLES

The problems posed in the last chapter could easily be solved by
any five-dollar, four-function calculator. Addition, subtraction, multiplica
tion and division are no longer the challenges they once were before
these modern days of calculators and computers. In the next few
chapters you will discover how to instruct ADAM to perform tasks that go
far beyond the capability of your little pocket calculator.

In addition to being smart and fast, ADAM has a phenomenal
memory. ADAM can remember thousands of numbers, names, addres
ses, words and instructions, which can be used to your advantage.

Suppose you write the following:

]X=3
]Y=S
]2=7

Although all three lines of this program are different, they all serve the
same function of telling ADAM to assign a particular letter name to a
given location in its memory and then to place a number in that location.
When ADAM reads the first line, for example, it takes the number 3,
carefully places it in a corner of its memory and then identifies that
memory location by assigning the letter X to it. We say that X is a variable
identifying a unique memory location. And since in this case the memory
spot contains a number, we say that Xis a numeric variable.

The same sort of reasoning can be used to "translate" the next two
lines. In the second line, ADAM is told to take the number 5, place it in
memory and assign the letter Y to that spot. Y becomes a variable
identifying a memory location with the number 5 in it. And once again, we
say that Y is a numeric variable since it identifies a part of memory where
a number resides.

You can use ADAM to remember all of the things you're too busy to
keep track of yourself. For example, you know that there are 36 black
keys on a piano's keyboard. Since you don't want to bother counting
them every time someone asks you how many there are, tell ADAM to
remember for you. You can do this by typing:

Bera and Smith . ~c;

]black= 36

or

Jlet black = 36

The use of LET is optional. Neither including nor deleting it will result in an
error. Its use was required many years ago when the original version of
BASIC was written, but in modern versions it is unnecessary. LET has
probably been kept around just to keep the old-timers happy.

Anytime you want to ask ADAM the number of black keys, tell it to
give you the answer by typing:

]print black

ADAM will respond with:

36

You can do the same with the white keys. Type in:

Jwhite = 52
]print white

and ADAM again responds with the correct answer, 52. You can get
fancier by now typing:

]print "The number of white key
s on a piano is "white" and the number of black keys
is "black"."

When you hit the return key, ADAM's response is:

The number of white keys on a
piano is 52 and the number of
black keys is 36.

To see how smart ADAM really is, a tough question: How many keys are
there on a piano's keyboard, both black and white? Simply type:

]print white + black

and you will get the answer:

88

66 • ADAM: The System

Numeric Variables
You have just made a great leap beyond simple calculators, since

you have been using common words to represent information. These
words are called variables because their values can vary or change.
They are numeric because they represent numbers. Just as regular
mailboxes contain labels for easy sorting, ADAM has electronic labels
corresponding to the electronic pigeonholes into which it saves and from
which it retrieves information. The names you give to the variables are the
labels on these pigeonholes.

You could have assigned any value to the variable WHITE. You could
even have assigned it the value of another variable, such as BLACK, by
typing:

]white = black

In English, this would be equivalent to saying: "The variable named
WHITE assumes the value of the variable BLACK. WHITE and BLACK are
both now equal to 36. Note: This is not the same as typing:

]black = white

If you accidentally typed this instead, both variables would now be equal
to 52. The variable to the left of the equal sign always assumes the value
of the number, variable or equation located on the right. You can easily
check this by asking ADAM to print the value of the variables. Since the
left side of the equation changes to assume the value of the right side,
only a single variable can be located to the left of the equal sign. ADAM
will remind you of this if you forget it. For instance, type:

]19 = black

or

]white + black = keys

ADAM will chide you by saying:

19 = black
/1.

Illegal Command

or

white+ black= keys
/1.

Illegal Command

ADAM is providing you with constructive criticism. Not only is it telling you
that you made a slight error in the grammar of SmartBASIC, ADAM is also
trying to show you where you made the error by placing a caret or
arrowhead beneath the location of the error. By putting the arrowhead
under the equal sign in "19 = black," ADAM is telling you that after you
typed in the number "19," you were then wrong to type an equal sign. You
can't put a number in front of an equal sign in SmartBASIC since ADAM
will not accept a number as a variable name, and it would not be able to
distinguish between a line number and a value being assigned to a
variable. Similarly, the arrowhead under the plus sign is ADAM's reminder
to you that a plus sign can only follow an equal sign under the
grammatical rules of SmartBASIC.

Choosing Names for Variables
In choosing names for your variables you are limited by a few simple

rules.
1. Variable names can start only with a letter. For example: C, CS

and CH are valid names. 3H is not.
2. Variable names can contain only numbers and letters. They

cannot contain any other symbol or character, except for the dollar sign
(which can end the variable name and which creates a string variable to
be discussed soon). A%, D* and 7& are not acceptable names.

3. Only the first two characters (and the last if it ends with a dollar
sign) of the variable's name are read by ADAM. For example, type:

)mountain = 5000
]molehill = 50
]print mountain

ADAM will respond with the number 50 since it sees only the "mo" in
each of the variables. ADAM believes that you first gave MO a value of
5000 and then changed your mind and decided to make MO equal to 50.
So when you asked ADAM to print the value of MO, it printed the last
value you gave----50. ADAM cannot tell the difference between a moun
tain and a molehill. This is why the number of variable names that you can
use is so limited. You can calculate that ADAM can distinguish only 2592
variable names, exactly half of which are for the mysterious string
variables and their dollar signs.

68 • ADAM: The Svstem

4. Choose variable names that remind you of the things they
represent. ADAM won't mind if you use long variable names. If you use
many variables in a program, it's much easier to keep track of them if their
names hold some meaning for you. For example, use names like
VELOCITY, ELEVATION or PROFIT to represent the speed of a bullet, the
height of a building, or the amount of money you made in your last stock
transaction. These are much easier to remember than VE, EL, and PR, or
X, Y and Z. Using easily recognizable names makes programming easier,
especially when you go back to finish or read a program a few days later.
It's a habit you should develop.

Programming Considerations
Variables are very important for programming. The most immediate

implication is that with numeric variables it's no longer necessary to
repeat the same number many times in a program, even if that number
will be used many times. Instead, one can store the number in memory by
using a variable. Then, whenever you want to work with the number, use
the variable name instead. It's easier and briefer that way. Watch:

Suppose you were given $50,000 to buy a Mercedes Benz costing
$14,344. Of course, if you were willing to part with all your money, you
could purchase more than one Mercedes. To see how many of these cars
you could buy, consider the following program:

]10 cost= 14344
]20 print cost
]30 print cost * 2
]40 print cost * 3
]50 print cost * 4
]60 end

The effect of line 10 of this program is to store the price of a single
car in a specific memory location inside ADAM, and to label that location
COST. COST is, in effect, a variable identifying a particular memory
location. Line 20 has ADAM print the price of one car. In lines 30, 40, and
50, ADAM computes the price of two, three and four cars, respectively,
and prints the results out on the screen. If you were to write this program
and type RUN, you would get the following:

□-.-- --,..J <='-:........ r"r'\

14344
28688
43032
57376

As you can see from the results, your $50,000 endowment would
allow you to buy only three Mercedes Benz autos. How cruel life can be!
The larger point, however, is to recognize that it is possible, using a
variable, to store a specific number in memory and then simply refer to
that variable name when you want to use the number. This can be a big
time and space saver, as the following program illustrates.

]10 dozen= 12

]20 print "In 1 dozen donuts th
ere are " dozen " donuts."

]30 print "In 2 dozen donuts th
ere are " dozen * 2 " donuts."

]40 print "In 3 dozen donuts th
ere are " dozen * 3 " donuts."

]50 print "In 4 dozen donuts th
ere are " dozen * 4 " donuts."

]60 print "In 5 dozen donuts th
ere are " dozen * 5 " donuts."

The program above will compute just how many donuts you have for
batches ranging from one to five dozen. The nice feature about the
program is that you have to key in the critical value for a dozen only once.
The computer has stashed away the number 12 in one of its numerous
memory locations, and anytime you wish to refer to it you simply use the
variable name DOZEN. ADAM then immediately knows you're talking
about the number 12. You could then program ADAM to acknowledge the
fact that some dozens contain 13 donuts-baker's dozens! How could
you do this? It's simple. All you would need to do is rewrite line 10 so that it
read:

]10 dozen= 13

By retyping line 10, you are in effect changing the value in the
memory location identified by the variable DOZEN. Instead of having the
number 12 stored in this electronic pigeonhole, ADAM now has the

70 • ADAM: The Svstem

number 13. To see that this is so, try reviewing your program by typing the
LIST command followed by a carriage return. Line 10 should now say
"dozen= 13." Even more importantly, when you run the program the new
results should reflect the fact that dozens are now baker's dozens. It is
easy to change the value represented by a variable; simply define the
variable again, giving ADAM the new value.

String Variables
Now that you've expanded your computer vocabulary to include

numeric variables, you probably suspect that there are variables for
letters and words as well-variables representing locations where things
other than numbers are stored. If you're thinking that, your suspicions are
right. SmartBASIC has string variables that do precisely that.

In computer circles, a string is simply a word. More precisely, a
string is anything that ADAM hasn't been programmed to think of as a
number. This includes letters, words, sentences, spaces and punctuation
marks, all of which must be enclosed in quotation marks to be considered
strings. Strings can even consist of numbers-provided, of course, that
they too are enclosed in quotation marks.

It follows logically, then, that a string variable is a variable represent
ing a location in ADAM's memory where strings are stored. However, we
can't simply use a letter to name a string variable. The letters, you'll recall ,
have already been reserved for numeric variables. Instead, string vari
ables are named using letters and words with a$ tacked onto the end.
You can think of the dollar sign as a fancy S standing for string variables.
A few examples should illustrate this.

Let's put the words from an Irving Berlin song into a string variable
named C$.

)10 C$ = " I'm dreaming of a whi
te Christmas, just like the ones
I used to know."

)12 print C$

)20 end

If you tell ADAM to RUN, the first line of "White Christmas" will be
printed on your screen. For example:

Bera and Smith . 71

]run

]I'm dreaming of a white Chris
tmas, just like the ones I used
to know.

Now suppose we'd like to add a line from the song "Let It Snow" to
our program. We might type the following:

]15 Let E$ = "Oh, the weather outside is frightening."

]17 print E$

If you list your program, you'll find that ADAM has dutifully inserted
lines 15 and 17. What's more, if you run your program a second time, you
will find both Christmas songs being printed on your screen, exactly as
you wished.

What's happening is that ADAM has taken the line from "White
Christmas" and placed it in a memory location labeled C$. When you
type PRINT C$, ADAM immediately prints whatever is currently found in
memory location C$-in this case, the Irving Berlin song.

The same can be said of E$. Like C$, E$ is the name for a place in
ADAM's memory where words are stored-in this case, our second
Christmas song. When you tell ADAM to print E$, it scrounges around in
its memory for the location marked E$ and prints whatever lies there. As
long as there is something inside location E$ (and in this case we have
assigned words to the location), ADAM will dutifully return the contents of
E$.

This raises another point. Ordinarily, ADAM will not give you an error
message if you ask it to print the contents of a variable that hasn't been
defined. Instead, ADAM will print zero for undefined numeric variables
and a blank space for undefined string variables. Type NEW, wait for the
bracket to reappear on your screen, and then type the following program:

]10 print A
]20 print 8$
]30 end

Now type RUN.
Since neither A nor B$ has been defined, the contents of the memory

locations labeled A and 8$ are empty. Your output should be the
following:

0

72 • ADAM: The System

ADAM returns a zero to reflect the contents of the numeric variable
and a blank line indicating that the string variable has not yet been
defined. By now, however, you should recognize that with a single
command it's possible to create substance where formerly there was a
void. You might add the following to your program:

]5 A= 7
]7 B$ = "Merry Christmas."

Now try running your program. You should get:

7
Merry Christmas.

Suppose you feel sorry for ADAM, because computers cannot share
the joy and emotions of festive occasions. Let's see if we can teach
ADAM some of the fundamentals of being human. Start by typing:

]love$ = "chocolate, a Mercedes
Benz, good friends, and a new
a-bedroom house."

Now see what happens if someone asks ADAM to describe its definition
of love:

]print "Love is "love$

Love is chocolate, a Mercedes B
enz, good friends, and a new 8-
bedroom house."

Some might think that ADAM's new owner is a bit too materialistic.
Notice that when you assign a value to a string variable, you must

enclose the string of characters in quotation marks. This allows you to
include spaces at the beginning and end of the characters you wish to
include in your string variable. For example:

]hate$ = "trips to the dentist
, the tax man, and my old
tennis shoes. "

The spaces outside the quotation marks are ignored, as are the letters te
in hate$. The spaces within them, however, are part of the string variable.
Just as with numeric variables, ADAM can't read beyond the first two
letters. It can't tell the difference between HATE$ and HAIRY$ or between

Ri:,rn ,:,nrl c : .. 1.- ..,.,..

POWER$ and POLECAT$. ADAM does recognize them as string vari
ables, however, and will not confuse them with numeric variables. Try
typing:

]power= 20
]polecat$ = "Bill Maloy"
]print power$

ADAM responds with:

Bill Maloy

When you told ADAM to print POWER$, ADAM searched for a string
variable beginning with the letters PO. Because of the dollar sign, ADAM
did not look for a numeric variable beginning with those same letters.
Computers consider numeric and string variables to be very different
entities. You can't even use them in the same equation. Typing

]prince$ = polecat$

is perfectly acceptable (unless you know Bill), but typing

]skunk = polecat$

will result in:

skunk = polecat$
I\

Numeric Equation Expected

It matters little whether a skunk is a polecat or not. ADAM won't accept
that conclusion because computers just get stubborn about this sort of
thing. They just won't let you mix apples and oranges (metaphorically
speaking), or string variables and numeric variables (literally speaking).

Now for something that will start your creative juices flowing. You can
add string variables. (No, you're not being strung along.) You can't divide,
subtract or multiply strings, but you can add them. What do you get? Try
this:

]love$ = "I love you because "
]hate$ = "you broke my heart."
]marriage$ = love$ + hate$
]print marriage$

74 • ADAM: The System

You'll get

I love you because you broke my
heart.

You could also type:

]marriage$ = love$ + "you broke
my heart. "

]print marriage$

and get the same result. You add string variables to any text or group of
characters as long as you put quotation marks around the text. However,
you can't have any numeric variables or values in an equation in which
you are adding string variables. Typing:

]Romeo = 17
]Juliet$ = "a lovely young girl of"
]love$ = Juliet$ + Romeo

results in an error.

love$= Juliet$+ Romeo
I\

Type mismatch

ADAM is not trying to say that Romeo and Juliet aren't right for each
other (though hindsight indicates that this might have been good advice).
ADAM, stubborn little machine that it is, just refuses to mix string and
numeric variable types, no matter how hard you try or how often you
command.

At this point you've probably decided that ADAM is not much of a
romantic. If you've given up on filling up ADAM's head and you want to.
erase all the variables that you defined this session, simply type the
command CLEAR and ADAM will forget every variable-numeric and
string-that you have told it to remember. CLEAR will not delete
programs that you have created; the NEW command you read about in
the last chapter is reserved for that purpose. Likewise, NEW will not affect
ADAM's memory of the values of variables. Neither will the HOME
command, which erases only the screen.

String Functions
Suppose you still think that Romeo and Juliet are right for each other,

even though ADAM insists that they are not. (ADAM is beginning to sound
like some parents.) If you, as Juliet, really want to be with Romeo, you'll
just have to convince ADAM (or your parents) that Romeo has reformed,
that he has given up his old ways. To do this, type:

]Romeo= 17
]Juliet$ = "a lovely young girl of"
]love$ = Juliet$ + str$(Romeo)
]print love$

and you get:

a lovely young girl of 17

Typing STA$() looks as if you're putting Romeo in a straight-
jacket (After a few years, he might begin to think so.) Actually, you just
told ADAM that the love of Romeo and Juliet wouldn't result in a "mixed
marriage." The STA$ command converts numeric variables or even plain
numbers into strings. These strings are perfectly compatible with string
variables or other strings of text that you've enclosed in quotation marks.

Suppose you think it's unfair that Romeo should be the one to
change. Maybe Juliet is at fault, since she does have a bad habit of
inviting young men onto her balcony. She did offer to change if Romeo
would not. (Look it up.) If you inform ADAM of this change by typing,

]Juliet = val(Juliet$)
]love = Juliet + Romeo
]print love

you'll get the number 17. The VAL command is nearly the complement of
the STA$ command. It asks ADAM for the numerical value of the string in
the parentheses. If the first character of the string is not a digit, plus sign
or minus sign, then ADAM gives it a value of zero. If the string begins with
a positive or negative number, ADAM assigns it the value of that
number-the number that you will get by starting at the beginning of the
string and continuing until you reach a non-digit character. For instance,
VAL(" -123 456") is - 123, VAL("345+67") is 345, and VAL("A bird in the
hand.") is zero.

In the example of our star-crossed lovers, the numeric variable
JULIET is assigned the value zero, since the string variable JULIET$

76 • ADAM: The System

doesn't begin with a digit, plus sign or minus sign. Therefore, the numeric
variable LOVE becomes the sum of zero and the value of the numeric
variable ROME0-17.

You are appalled by ADAM's conclusion that JULIET contributes
nothing to the value of LOVE, that ROMEO is contributing everything. That
will teach you to ask a computer how to measure love. Seventeen is the
sort of answer one expects from a computer. Let's see if ADAM can
measure love's value in another way. Try this example:

]Juliet = len(Juliet$)
]love= Juliet+ Romeo
]print love

This time, you get an answer of 40. It seems that their love is growing
rapidly. Since you already know that ROMEO contributes 17, JULIET
must be making up the difference. In fact, JULIET contributes 23 now. If
you look carefully, you will see that there are exactly 23 characters
including blanks in the string variable JULIET$. The LEN command
comes from an abbreviation of the word "length." It simply counts the
number of characters in a string. You can even count the number of digits
in a numeric variable if you use the STR$ command. This trick works only
for nonnegative integers, since decimals and minus signs would also
be counted. For instance, LEN{STR$(4567)) is 4, but LEN(STR$(-45.67))
is 6.

The remaining two string commands are quite similar. The first is the
LEFT$ command; the second is the MID$ command. Both allow you to
extract characters from strings or string variables. As you will soon see,
the LEFT$ command is only a special form of the MID$ command.

To see how the MID$ command works, begin by typing:

]family$ = " Dad, Mom, Junior"

Now that ADAM knows your family, you want your new computer to say
hello to your mother. Somehow you must instruct ADAM to pull your
mother's name out of the string. You can do this with the MID$ command.
Just type:

]mother$ = mid$(family$, 6, 3)
]print "Hello "mother$

ADAM will then say:

Hello Mom

Aren't you impressed? Your protege is coming along quite nicely. If only
you could teach him not to hog the television set.

When using MID$, you need to supply three parameters-the string
or name of the string variable, a place to begin, and the number of
characters. In this example, a string variable was named-FAMILY$.
Then ADAM counted over six characters from the beginning of the string
to the "M" in "Mom." ADAM then counted over three characters to the
end of "Mom." The PRINT command told ADAM to display those three
characters on the screen.

Try this again, greeting your father instead.

]father$ = mid$(family$, 1, 3)
]print "Hello "father$

To this your trusty computer replies:

Hello Dad

ADAM will respond in exactly the same fashion if you type:

]father$ = left$(family$, 3)
]print "Hello "father$

The LEFT$ command tells ADAM to extract the leftmost characters
from a string. In the parentheses you must define the string and the
number of characters. As you've guessed, the LEFT$ command is merely
a MID$ command beginning at the first character (the middle parameter
= 1), from which point ADAM will start reading.

Just one more example and you'll know all you need to know about
string functions. Type:

]myself$ = mid$(family$, 11)

Notice that you are deleting the third parameter. Now type:

]print "Hello "myself$

ADAM will finally greet you with:

Hello Junior

There is really just one more thing to know about this command. The third
parameter is optional. If you leave it off, ADAM simply extracts all of the
string following the beginning position designated by the second
parameter.

78 • ADAM: The System

Arrays
For very large programs, you may soon grow tired of thinking up new

and original variable names. There is a solution to this problem, called an
array. An array is a systematic grouping of items or an arrangement of
elements into rows and columns. That meaning is valid when used with
reference to computers, too.

For instance, suppose you want to save a list of the names of the
people with whom you work or go to school. You can use the variable
NAME$ to refer to the entire list whenever you communicate with ADAM.
Or suppose that you are a school principal and need to keep track of the
names of the teachers in each of your classrooms.

So that ADAM won't be caught off guard when you want to use an
array, you must type the DIM command (short for "dimension") to instruct
ADAM to set aside a portion of its memory for your array. This command
should appear very near the beginning of your program. To illustrate this,
let's pretend that you're the school principal, responsible for 25
classrooms. Begin by typing:

]10 dim room$(25)
]20 room$(1) = "Mr. Brown"
]30 room$(2) = "Ms. Faucette"
]40 room$(3) = "Ms. Kingsbery"
]50 room$(4) = "Mr. Hammer"
]60 room$(5) = " unassigned"

Anytime in the future, you can find out which teacher has been assigned
to which room by typing RUN and then PRINT ROOM$(X) where Xis the
room number.

Arrays can be composed of either numbers or strings, just like
numeric variables and string variables. The rules are the same. You just
have to tell ADAM in advance how many elements will be in the array. It's
as if you are making reservations for a hotel room. Just tell ADAM to
reserve a place in its memory big enough to accommodate the informa
tion you plan to type in later. If you don't know the exact number, just
"overbook." It's better to reserve a space too large than one too small.

The schoolteacher example above used a one-dimensional array
named ROOM$--which was composed of 25 elements. The number
within the parentheses is called the index. You can refer to specific items
of information (the names of the teachers) by the name of the array and
the index.

□-•- ---1 ("'\- ~.1.L

Due to your success at running the high school, the school board
has decided to increase the size of your school by adding three floors to
your old one-floor building. These floors also have 25 rooms each, giving
you a total of 100 rooms for which you are responsible. You can use your
old program by typing:

]10 dim room$(100)

or you can create a two-dimensional array with two indexes-one
referring to the floor number, the other to a particular room on that floor.
You do this by typing:

]new
]10 dim room$(4,25)

and then

]20 room$(1, 1) = "Mr. Brown"
]30 room$(1,2) = "Ms. Faucette"
]40 room$(1,3) = "Ms. Kingsbery"
]50 room$(1,4) = "Mr. Hammer"
]60 room$(1,5) = "unassigned"

to reassign the teachers to their old rooms, and

]70 room$(2,21) = "Mr. Ward"
]80 room$(3,3) = "Ms. Landers"

to make assignments for two of your new staff members.
You could even add a third index, creating a three-dimensional

array, to account for the school quarter for which that teacher is assigned
to that room.

]dim room$(4,25,4)

Typing:

]80 room$(2,21,3) = "Mr. Ward"

would indicate that Mr. Ward had been assigned room 21 on the second
floor for the third quarter.

ADAM can handle one, two, and three-dimensional arrays as long as
the total number of elements in the array doesn't exceed the capacity of
its memory. Limit the size of your arrays to about four thousand elements,
depending on the dimension of the array and whatever else you've told

80 • ADAM: The Svstem

ADAM to remember. You can calculate the number of items or elements
in the array by multiplying the indexes in the dimension statement
together. For example, DIM ROOM$(4,25) creates 100 locations and DIM
ROOM$(4,25,4) tells ADAM to set aside 400 locations.

You now know how to write simple programs that will do numerical
calculations and keep vital data in ADAM's pigeonholes, which you've
labeled with your variable names. If you don't feel comfortable with these
new skills and concepts, don't worry. You're learning a new language and
aren't expected to understand everything all at once. Relax and continue
reading. Then go back and review the concepts again. After a while you'll
feel quite at ease with SmartBASIC.

CHAPTER?
INPUT AND OUTPUT

A classically educated person would probably think that 1/0 (pro
nounced eye-oh) referred to yet another maiden pursued by Zeus.
Unfortunately, that person would be wrong; Io's affair with Zeus had little
to do with computers. 1/0 doesn't refer to one of Jupiter's moons either. To
the computer literate, 1/0 stands for Input/Output-everything pertaining
to communicating with your computer, shoveling data and commands
into its metallic mind and shoveling information and calculations back to
the world outside.

You've already dealt with computer 1/0 if you've ever used a
computer, a video game or a telephone. Typing on a keyboard, moving a
joystick and dialing a telephone number are all methods of inputing
information into a computer. The screen displays generated by your
computer or game are examples of the computer transmitting information
back to you. However, ADAM doesn't always have to send data to you
directly or by way of the screen. Your computer can send information to
external storage areas, so you can keep it for future use, or to the printer,
so you can have a hard copy (a printed copy of the information).

The Digital Data Pack
When using SmartBASIC, you must type the SAVE command to

instruct ADAM to send information to its digital data pack. If you
remember, you would press the STORE/GET key if you were using
SmartWriter. Unfortunately, pressing that key has no effect when using
SmartBASIC. After you type SAVE, you must also type a space and a
filename before hitting the return key. A copy of the program on which
you are currently working will be stored on the data pack as a file, and will
be referenced by the filename that you designated. You can use any
characters, but no more than ten. For example, type the following
program into ADAM:

8P.m ;:mrl ~mith . R~

]new

] 10 print "To be, or not to be:"

]20 print "That is the question
"

]30 print "Whether tis nobler i
n the mind"

]40 print "to suffer the slings
and arrows of outrageous fortu
ne."

]50 end

Now store this program by typing:

]save Hamlet

As soon as you press RETURN, the tape in the data pack drive will begin
to spin and ADAM will transfer your program onto the data pack. Now you
have to be patient. This will take a while. If you are storing a large
program, you might want to run to the kitchen and grab something to eat.
Computer memory based on tape is inexpensive but slow.

Type NEW to clear ADAM's memory, then type RUN just to make
sure. You should get no response from ADAM. ADAM has forgotten the
Danish prince's soliloquy. To refresh ADAM's memory, you must type
LOAD, followed by the filename HAMLET. The LOAD command tells
ADAM to retrieve the designated file from the external storage area (the
digital data pack), and place a copy of it into its internal memory. If you
type RUN now, you should get:

To be, or not to be:
That is the question.
Whether tis nobler in the mind
to suffer the slings and arrow
s of outrageous fortune.

Sir Laurence Olivier had better beware.
Suppose that you want to increase ADAM's Shakespearean rep

ertoire. Begin by typing:

Rd . AnAM: ThP. Svstem

]new
]10 print "Tomorrow, and tomo
rrow,"

]20 print "and tomorrow, Creeps
in this"

]30 print "petty pace from da
y to day"

]40 print "To the last syllabi
e of"

]50 print "recorded time,"

]save Macbeth

]new

]10 print "If I profane with m
y"

]20 print "unworthiest hand th
is holy"

]30 print "shrine, the gentle
sin is this"

]save Juliet

Now ADAM knows parts of three great plays. Before you realize it, you
may find ADAM asking your permission to join an acting company. Before
ADAM does any serious performing, you might want to let it in on a little
secret-the last speech belonged to Romeo, not Juliet. It sure is easy to
fool a computer; it may not be nice, but it is certainly easy. Let's correct
poor ADAM's memory.

You can see the mistake by typing CATALOG. After a minute or so,
ADAM will display a list of all of the programs that you've saved on the
data pack in the drive. In this instance you should see the filenames
Hamlet, Macbeth and Juliet listed along with any others you might have
created. Now it's time to replace the erroneous filename. Type:

]rename Juliet.Romeo
]catalog

The RENAME command changes the old filename, Juliet, to the new
one, Romeo. It does not affect the contents of the file in any way. When

RP.m ::mrl ~mith . Al;

ADAM prints the new file catalog, you should no longer see Juliet listed.
You should see only Hamlet, Macbeth and Romeo.

It's a few weeks later. The critics' opinions are sitting on your desk.
ADAM's portrayal of Hamlet and Macbeth went well, but in the role of
Romeo, it was less than convincing. I suppose that ADAM is not a
romantic figure. Maybe the definition of love that you gave ADAM in the
last chapter has something to do with it. It's best for unsuspecting
audiences that ADAM forget the part of Romeo. You can do this by telling
ADAM to erase the file named Romeo. Do this with the DELETE
command:

]delete Romeo

Now type:

]catalog

You will notice that ADAM now has no recollection of the file Romeo. Do
not confuse DELETE with DEL, which will be mentioned later. The former
must be followed by a filename, the latter by a line number.

You can delete all of the information on a digital data pack, including
SmartBASIC, by typing INIT HELLO. Don't ever try this with the Smart
BASIC tape in the drive. Use it only on a data pack that you want to wipe
completely clean.

Suppose you want to expand ADAM's role as Hamlet. Type:

]new

] 10 print "Alas, poor Yorick!"

]20 print "I knew him, Horatio
, a fellow"

]30 print "of infinite jest of
most excellent fancy. "

]save Hamlet

]catalog

This new program will not be added to the old Hamlet file; it will
replace it. Whenever you type SAVE and the filename of an existing file,
the program in ADAM's internal memory is written over the old one, but
the old one is also saved. Notice the letters to the left of the filenames. You
should see a column composed of the letters A and a. The small a
designates the old file; the capital A designates the one that you just

86 • ADAM: The Sv~tP.m

saved. If you save HAMLET once more, the file designated with the
capital A is written over the file with the small a, and the file that you just
saved is written over the file that had the capital A. The oldest version of
HAMLET, the one that had been next to the small a, would now be lost.
You could never load it again.

If you decide that you don't want to lose the oldest version of
HAMLET, you need to change the small a into a capital A. Use the
RECOVER command to perform this task. RECOVER will have no effect if
there is currently a file named HAMLET with a capital A next to it. You
must first RENAME or DELETE the file next to the capital A and then use
RECOVER.

To prevent accidents from occurring, you can use the LOCK
command. You cannot delete a file that's been locked, nor can you save
a file with that filename. If you attempt either, ADAM will chastise you with
an error message. You can preserve the "To be, or not to be:" soliloquy
with:

]lock Hamlet

Then if you try to save the new program, ADAM will respond with:

FILE LOCKED

You would then have to save "Alas, poor Yorick!" under a different
filename. If you type CATALOG at this point, you will notice that an
asterisk has suddenly appeared next to the A near the filename HAMLET.
This asterisk indicates that the file has been locked.

To unlock a file, simply type UNLOCK and the filename. The file will
be exactly as it was before you locked it. Typing:

]unlock Hamlet

will allow you to update your file.
If you get tired of typing:

]new
]load Hamlet
]run

you can simply type:

]run Hamlet

The effect is exactly the same. If you just type RUN, the program currently
in ADAM's internal memory will be activated. RUN followed by a filename
erases the current program, loads the new one and starts it going.

□-.-- --.....a C'-:,1.L-.. n~

Interactive Programs
With the proper instructions ADAM can stop during the execution of

a program and ask for information from you before continuing. ADAM's
solution or output can vary, depending on the information you provide.
Such programs are called interactive programs. They are very useful in
solving many difficult and complex problems that require the judgment
and knowledge of the user at critical decision points.

There are two SmartBASIC statements that cause the program to
stop until a question has been answered. The first of these is the GET
statement. The second, and more useful, is the INPUT statement.

The GET statement allows the operator (the person sitting at the
keyboard), to input a single character from the keyboard at a particular
point in the program. The character that is typed will . not appear on the
screen, and pressing the return key is not necessary. ADAM will consider
the character either a string value or a numeric value, depending on the
type of variable preceding the GET statement in the program. The GET
statement is most often used when the question asked of the operator is a
multiple choice question, or one requiring a simple yes or no answer. It is
used almost exclusively in conjunction with the IF statement, which you
will learn about in the following chapter. Examples of its use can be found
in that chapter also.

The INPUT statement tells ADAM to print a question mark and to wait
until you hit the return key to continue. The information that you provide
can be one or more numbers or strings. Try this example:

]new

]10 print "What is your name?"

]20 input name$

]30 print "How old are you?"

]40 input myself

]50 print "How old is your fat
her?"

]60 input father

]70 print "How old is your mot
her?"

]80 input mother

]90 print "You're a fine fella
w, "name$"."

]100 print

]110 print "When you were born
, your father was "father-mysel
f" years old,"

]120 print "and your mother wa
s "mother-myself" years old."

]run

ADAM will ask you a series of questions for you to answer. (Sample
responses are given.)

What is your name?
?Alex
How old are you?
?12
How old is your father?
?36
How old is your mother?
?34

You're a fine fellow, Alex.
When you were born, your fathe
r was 24 years old
and your mother was 22 years o
Id.

With a pair of statements-DATA and READ-you can store informa
tion in the program for use when you run it. The information is stored
before or after the main body of the program in a series of lines beginning
with the word DATA. You can use any number of them and each can
contain either numbers or text. With the READ statement, ADAM will
assign the information stored in the DATA statements to variables. By
putting commas between the pieces of information, one DATA statement
can provide values for many variables. For instance:

n _ ____ _. " ~-- ·••

]new
]10 data 10, 20, 30, 40
]20 read a, b, c, d
]30 print "A IS ";a
]40 print "B IS ";b
]50 print "C IS " ;c
]60 print "D IS ";d
]end
]run

ADAM will print:

A IS 10
BIS 20
C IS30
D IS40

ADAM will read the information in the DATA statements one piece at
a time, from left to right. If you tell ADAM to read more times than there are
pieces of information between the commas on all of the DATA statements,
ADAM will stop the program and give you an error message telling you
that it has run out of data.

You can use the same data over and over, however, with the
RESTORE statement. This tells ADAM to start again with the first DATA
line when READ tells it to look for more information. Let's alter the last
example to take advantage of this. Type in these new lines to add to the
program:

]10 data 10,20
]15 read a,b
]20 restore
]25 read c,d
]run

This time ADAM will print:

A IS 10
B 1S20
C IS 10
D 1S20

The most common use of DATA and READ is assigning large
amounts of information to the arrays that you create with the DIM
command. To do this efficiently, you will need to use a FOR ... NEXT
loop. You will learn what this is and how to apply it in the next chapter.

Turning the Printer On
Not only can ADAM communicate to you through the screen, it can

also print onto paper, generating a hard copy. Just type PR#1 to activate
the printer. Now everything that ADAM prints on the television screen will
also be printed on the printer. One side effect of using the printer is that
ADAM will slow down, since the printer is slower than the screen. When
you want to turn the printer off, just type PR#0.

Print Formatting
You can improve the appearance of a program's output with a few

simple tools. The process of arranging this output so that it is easier to
read and understand is called formatting. Several characters, functions
and statements make this possible. They include the semicolon, the
comma, the SPC, TAB and POS functions, and the INVERSE, NORMAL
and SPEED statements.

To get started, you might want to learn a trick that will save you some
time. Rather than type the command PRINT over and over again, ADAM
will let you type a question mark instead. ADAM interprets? exactly as it
interprets PRINT. In fact, if you list the program after you type it in, ADAM
will replace your ?s with PRINTs. As an added convenience, notice how
close on the keyboard the question mark is to the quotation mark and shift
key, both of which are used very often. Feel free to use this shortcut
whenever applicable.

A semicolon placed at the end of a print statement tells ADAM to
begin printing at the next character position. This effectively joins
together any text to be printed. For example, typing:

]new
] 10 ?"con"
]20 ?"cat"
]30 ?"e"
]40 ?"nation"
]run

results in:

con
cat
e
nation

However, typing:

]new
]10 ?"con";
]20 ?"cat";
]30 ?"e";
]40 ?"nation"
]run

will give you:

concatenation

As you can see, the semicolon concatenates data by displaying
strings or numbers next to each other, with no spaces between the
values.

The comma, on the other hand, separates printed data into fields. In
SmartBASIC, a comma will place output into two fields, one on the left
side of the screen, and one on the right. Typing:

]new
]10 ?"con",
]20 ?"cat",
]30 ?"e",
]40 ?"nation"
]run

will result in:

Typing:

con
e

]new

cat
nation

] 10 ? 55,555,5555,55555,555555,
5555555,55555555,555555555
]run

results in:

55
5555
555555
55555555

555
55555
5555555
555555555

Notice that the first item printed in each example is offset. The left
boundary of the leftmost field is one space to the right of the first column.
You can correct this aesthetic defect by printing two blanks before
printing your values. For example:

gives:

]new

]5 ? " " " " • ' '
]10 ? 55,555,5555,55555,555555,
5555555,55555555,555555555

]run

55
5555
555555
55555555

555
55555
5555555
555555555

The semicolon and comma give you some control over the format of
your output, but for more elaborate displays, you can use one of the
functions that is designed to work with the PRINT command. The first of
these is the SPC function.

SPC tells ADAM to "space over" a given number of spaces. It is
included in the PRINT statement following the PRINT command, and must
be followed by a numeric value in parentheses. That value tells ADAM
how many spaces to skip before printing, and shouldn't exceed 30, since
ADAM displays only 31 characters per line in SmartBASIC.

The next function that you might want to use is TAB. This function
works much like the tabbing of a typewriter, or the tabbing in SmartWriter.
TAB is often more useful than SPC because it tells ADAM the exact
horizontal position at which to begin printing. You don't have to count
spaces or positions in order to create even columns of information. As
with SPC, you need to enclose a number from 1 to 30 in parentheses after
TAB. That number will be the position at which ADAM will print. Here is a
program that illustrates the differences between SPC and TAB.

l=l.crr, ~nrl Qmi♦h _ <V:>

]new
]10 ? "ACCOUNTS OUTSTANDING"

]20 ? "------------------------
"

]30 ?"H. ROARK" ;spc(11)

]35 ?"$123.45"

]40 ?"D. TAGGART";spc(9)

]45 ?"$222. 78"

]50 ?"J. GALT'';spc(12)

]55 ?$314.99"

]60 end

When you run this program, you will get:

ACCOUNTS OUTSTANDING ______________ _

H.ROARK
D. TAGGART
J. GALT

$123.45
$222.78
$314.99

The only problem is that you have to recalculate the number to put after
SPC in each line in order to make the right column line up. You will always
have to do this when the items in the first column aren't all the same
length. Using TAB is much easier. For instance:

]10 ? "ACCOUNTS OUTSTANDING"

]20 ? "------------------------
"

]30 ?"H. ROARK";tab(20)

]35 ?"$123.45"

]40 ?"D. TAGGART";tab(20)

]45 ?"$222. 78"

]50 ?"J. GALT";tab(20)

]55 ?"$314.99"

]60 end

94 • ADAM: The System

Again, type RUN and you get:

ACCOUNTS OUTSTANDING ______________ _

H. ROARK
D. TAGGART
J. GALT

$123.45
$222.78
$314.99

This time you didn't have to do any counting yourself. ADAM moved to the
twentieth position automatically.

Another PRINT function will tell you the location of the cursor. It's
called POS (for "position") and it tells ADAM to determine the number of
the column at which the cursor currently resides. It is also followed by a
number in parentheses, but this time the number has no meaning. It's
called a dummy value. A zero is usually used. For example, type:

]new

]10 ?"THE CURSOR IS IN COLUMN"
;pos(0)

]20 end
]run

and ADAM will print:

THE CURSOR IS IN COLUMN 24

So much for POS. You probably won't have need for it very often.
If you really want to improve the looks of your output, consider the

INVERSE command. When ADAM sees this, everything that is subse
quently printed on the screen appears like a photographic negative of the
normal text. Instead of the white characters on a black screen that you
see when you first turn ADAM on, the printing will be black letters on a
white background. You can switch back to the standard mode by typing
NORMAL. The inverse characters will remain on the screen until you type
HOME or until they are scrolled past the top edge. You can use both of
these commands within your programs to switch back and forth. Try this
for practice:

]new
]10 ?"I AM NORMAL."
]20 inverse
]30 ?"I AM INVERSE."
]40 normal
]50 ?"I AM NORMAL AGAIN."
]60 end
]run

RP.rn ::mrl ~mith . a~

You can also control how fast ADAM prints characters on the screen
with the SPEED statement. Your range of options includes any whole
number between 0 (slowest) and 255 (fastest). Try this program:

]new

]10 speed= 10

]20 ? "HERE I AM GOING UP THE H
ILL."

]30 speed = 30

]40 ? 'TM ON THE WORLD'S FIRST"

]50 speed = 70

]60 ? "COMPUTER ROLLER COASTER."

]70 speed = 120

]80 ? 'TM AT THE TOP, AND HERE
I GO."

]90 speed = 180

]100 ? "BOY, THIS IS FUN."

]110 speed= 255

]120 ? "BUT, l'M GLAD"

]130 speed= 100

]140 ? " IT'S FINALLY"

]150 speed= 20

] 160 ? "OVER."

]170 end

96 • ADAM: The System

Editing and Debugging
When you're working in SmartBASIC, you don't always have to

retype a program line whenever you want to make changes to it. All you
have to do is put the cursor at the beginning of the program line and
make the appropriate changes before you press RETURN. ADAM will
type over all of the old characters as you type in new ones. You can use
the left and right cursor arrows to move along the line without destroying
it. Be sure that you don't use the other cursor-control arrows and that you
don't move off the program line when editing it. Now move the cursor just
past the end of the line and press <RETURN>. If you press <RETURN>
twice when the cursor is in the middle of the line, everything after the
cursor will be deleted.

If you can't see the program line that you want to edit on the screen,
tell ADAM to print it out using the LIST command. If you just type LIST,
ADAM will print the entire program. If you put a line number after LIST,
ADAM will print only that line. You can also tell ADAM to print several lines
at once by typing LIST XX - YY, where XX is the first line number and YY
is the last. ADAM will print both of these lines and every line in between.
You can also use spaces for XX and YY. This means list "from the
beginning" or "to the end."

If you want to delete a line, type the line number and then press
<RETURN>. Another method that allows you to delete one or more
program lines is to type DEL followed by a line number or a range of line
numbers, just as you did with the LIST command.

You will often need to delete or add spaces when you're editing a
program line. To do this you need to learn how to use ADAM's
<CONTROL> key. When you hold down <CONTROL> and press
another key, no characters are printed, but ADAM is not ignoring you. If
you hold down <CONTROL> and press N when editing a line, a space
will appear. This command is called <CONTROL>N. Now try
<CONTROL>O several times. This command will cause ADAM to delete
characters from the program. If the program is longer than one line
across the screen, notice that <CONTROL>N and <CONTROL>O will
not affect the characters on the second line. If you press <CONTROL>N
many times, the characters to the right of the cursor will be pushed off of
the right edge of the screen. These characters will not return, even if you
delete the spaces that you just added. Keep this in mind when editing.

There are several other important <CONTROL> functions.
<CONTROL>L has the same effect as typing HOME; it will clear the
screen. <CONTROL>P tells ADAM to print a hard copy of everything that
appears on the screen. Unlike PR#1, <CONTROL>P doesn't stay on
until you turn it off. It simply prints until the printed page looks like the

screen, then stops unless you press it again. When text is scrolling by too
fast for you to read, as it might when you type LIST, <CONTROL>S tells
ADAM to stop printing. Hit <CONTROL>S once more and ADAM will
start printing again. <CONTROL>C tells ADAM to stop running a
program. If ADAM is waiting for you to input data, then just type
<CONTROL>C followed by <RETURN>. ADAM will stop executing the
program and print "Break In Line XX" where XX is the line where ADAM
stopped the execution of the program.

You may often need to follow ADAM's path through a program in
order to find a problem with it. The best way to do this is to type TRACE
before you run the program. ADAM will then print a list of the program line
numbers as each line is executed. If the program is long, you might want
to turn on the printer first, since the information will quickly scroll past the
top edge of the screen. The TRACE command will continue to be
activated until you type NOTRACE. You can then run your program as
you normally would.

SmartBASIC and SmartWriter Together
There is one more thing you need to know. SmartWriter and

SmartBASIC use the same files. This lets you edit SmartBASIC programs
in SmartWriter if you wish. Just remove the data pack and reset ADAM.
Then use the same procedure, beginning with the STORE/GET command
key, to load the file into ADAM's work space. When you finish, store the
program as you would store a normal text file. The main disadvantage of
this method is that ADAM won't point out your errors, as in SmartBASIC. If
you are relatively sure that you know the proper formats of the com
mands, however, this method might be for you. The major advantages
are better control over editing and the ability to see more of the program
on the screen.

In addition, you can print your program on the printer while you're
using SmartWriter. You can even change the margins, add other text, or
incorporate the program into a report or letter. Most important, you can
merge SmartBASIC programs by using STORE/GET to move them into
the work space, edit them to remove duplicate line numbers, and then
store the whole thing under one filename.

SmartBASIC also allows you to perform commands on SmartWriter
files. Although there is no RECOVER command in SmartWriter, you can
recover files created with SmartWriter when SmartBASIC is running by

using both the DELETE and RECOVER commands, just as you would with
a program you had saved in SmartBASIC. When a digital data pack gets
close to full, it's a good idea either to get a new one or to erase old files
before you find yourself with a file in working memory or which ADAM
doesn't have enough room to save.

You have now learned everything you need to know in order to
communicate with ADAM. Next you will learn how to make ADAM get
down to some serious work, and how to keep it busy for hours with only a
few short program lines.

Ai:orr, ~nrl Qmith . on

CHAPTERS
MORE SmartBASIC

You have learned that ADAM can store vast amounts of information
and perform simple arithmetic calculations accurately with lightning
speed. ADAM also has the ability to make decisions and follow com
pletely different sets of instructions according to the outcomes of these
decisions. You can also program ADAM to repeat a set of instructions
many times without retyping them each time it's run.

Branching
Programmers aren't referring to real trees with leaves, bark and limbs

when they use the term branching. The branches about which they're
talking are subsets of a program. Each branch is designed to perform a
set of related instructions to accomplish a specific task. The branches
join together to form the program just like the branches of a real tree join
together to form the tree's trunk.

Have you ever watched a squirrel in a tree? ADAM's mind is like that
squirrel. The squirrel runs up and down the tree's branches and could
quite possibly spend some time on every branch of that tree. The squirrel,
however, can be only one place at a time. That means that when you look
up into the tree, you will probably see the squirrel staring back at you or
scampering along one of the tree's limbs. Like this squirrel, ADAM's
attention will be on only one of the branches of the program at any one
time. Like our bushy-tailed example, ADAM's attention can jump from
branch to branch, or run down an individual branch to the tree trunk (the
main part of the program) and run back up another branch. Fortunately,
ADAM doesn't have a tendency to gather nuts for the winter, but you
need to gather the instructions required to tell ADAM to jump from one
branch to another.

Berg and Smith • 101

Suppose you want to begin by designing a program that contains
just two branches. The first branch will give you instructions to get to the
bank and the second will give you instructions to get to the post office.
Begin by storing these instructions in two string variables, BANK$ and
POST$.

]new

]10 bank$="Turn left on Ma
rket Street, go 6 blocks,
turn right and go 2 more b
locks."

]20 post$="Turn left on Mi
ssion Street and go 7 bloc
ks."

You can tell ADAM to print these directions by adding a line to the
program that tells ADAM to print the string variables BANK$ and POST$,
but how do you get ADAM to print just one set of directions? If you want to
go to the bank, then you don't need ADAM to remind you how to get to the
post office. In the previous sentence there are two short but powerful
words that ADAM understands: "if" and "then." Notice how it makes the
sentence conditional: "If you want . . . then " ADAM interprets "if" and
"then" just as you do. ADAM will follow the instructions after the word
"then" when the words following the word "if" are true. Let's go back to
the example to see how this new command can apply:

]40 if place$="bank" then
print bank$: end

]50 if place$="post office
" then print post$: end

The colon before the END statement tells ADAM to expect another
command. You can use several colons to squeeze many different
commands onto the same program line. ADAM will follow the commands
in sequence.

Getting back to the example, you have probably already noticed a
slight problem. These two lines contain a string variable that hasn't been
defined, namely PLACE$. This variable refers to the place to which you
are requesting directions. You must have ADAM ask you where you plan
to go before it can decide which set of directions to print. Do you
remember how you did this in the last chapter? You have two choices, the

102 • ADAM: The System

GET statement and the INPUT statement. The variable PLACE$ will need
to assume the value of the word BANK or the phrase POST OFFICE. You
can't use GET in this situation because, as you previously learned, this
lets you type only a single character before ADAM continues to run the
program. Therefore, use the INPUT statement to tell ADAM to stop and
ask for your destination:

]30 input "Where do you w
ant to go?";place$

]run

ADAM will respond with:

Where do you want to go?

Suppose you want to go to the bank. Then type:

bank

ADAM will print:

Turn left on Market Street
, go 6 blocks, turn right
and go 2 more blocks.

Now ask for directions to the post office.

]run

ADAM again asks:

Where do you want to go?

This time answer

post office

ADAM then prints out the directions.

Turn left on Mission Stre
et and go 7 blocks.

The words IF and THEN must always be used together in the same
program line. They can be used in many combinations, not only with
PRINT, but also with GET, INPUT, SAVE, NEW, HOME, CLEAR, =, TAB,

Berg and Smith • 103

and just about any command you can use in SmartBASIC. The IF ...
THEN combination causes conditional branching, that is, ADAM will
perform any instructions in the branch following THEN, on the condition
that whatever is between IF and THEN is true. If what follows IF is not true,
the commands following THEN will be ignored. ADAM will not move along
that branch. (Is that like saying ADAM won't go out on a limb?)

Let's go back to the example. Suppose that the information in the
program is top secret. You would rather destroy the data than let it fall into
unfriendly hands. Type:

]60 new

Now if BANK or POST OFFICE aren't input when ADAM asks the
question, ADAM will ignore the branches in lines 40 and 50 (each of
which tells ADAM to end), and continue to line 60, which tells ADAM to
erase the program from working memory. If you do answer ADAM's query
with one of the correct locations, you will receive the proper directions
and the program will stop without being erased.

In addition to conditional branching, using the IF . . . THEN
statements, you can instruct ADAM to branch unconditionally with
another command, GOTO. GOTO, meaning simply "go to," is followed by
a positive whole number or an expression that has a positive integral
value. This value must equal a line number within the program. GOTO
tells ADAM to skip to the line number that follows. For example, type:

]new
]10 print "SPRING"
]20 print "SUMMER"
]30 print "WINTER"
]40 print "FALL"
]50 goto 10
]run

Suddenly, you will see:

SPRING
SUMMER
WINTER
FALL

104 • ADAM: The System

SPRING
SUMMER
WINTER
FALL
SPRING
SUMMER
WINTER
FALL
SPRING
SUMMER
WINTER
FALL

flashing endlessly across the screen. Each time ADAM gets to line 50, the
GOTO statement sends it back to line 10. Then ADAM follows the
program lines in numerical sequence until line 50 is reached again.
ADAM will continue printing the names of the seasons again and again
until mechanical failure forces it to stop. ADAM has been trapped in an
infinite loop and will stay trapped until you provide the key to ADAM's
prison. That key is <CONTROL>C, which will interrupt the program.

Let's try another example of GOTO. Type in the following.

]new
] 10 print "ONE"
]20 print "TWO"
]30 goto 60
]40 print "THREE"
]50 print "FOUR"
]60 print "FIVE"
]70 end
]run

ADAM will respond:

ONE
TWO
FIVE

What happened to THREE and FOUR? ADAM branched around program
lines 40 and 50, completely leaving out part of the program.

These two examples show the two most common errors that will
occur when you use branching in your programs. The first, the infinite
loop, is usually easy to see. However, if there aren't any PRINT statements
within the loop, ADAM will seem to sit motionless; the screen won't
change at all. The second type of problem is more difficult to find if your
program is large. You may never realize that ADAM is ignoring part of
your program. The best way to discover and solve these problems is to
use the TRACE command (discussed in the last chapter).

Loops
Loops aren't necessarily bad. In fact, looping allows ADAM to

perform many repetitive calculations with only a few program lines. After
going around in circles for a finite number of times, ADAM will break out
and continue with the remainder of the program. The most common way
of creating a controlled loop is with a pair of words that must be used
together. They are FOR and NEXT. The FOR must precede its associated
NEXT in the program. Unlike IF and THEN, which must occur in the same
program line, FOR and NEXT will occur on different lines. The loop
encompasses both statements and every program line that falls between
them.

Suppose you want ADAM to read a large volume of information in
several DATA statements and to assign that information to several
variables. If the number of variables and the amount of information is
small, you should have no problem. But what if you need a hundred
variables? A FOR . . . NEXT loop might be the best way to solve the
problem. First create an array with the DIM statement. Then let ADAM
feed the information from the DATA statements into that array. Here is an
example:

J10 dim room$(100)
J20 for x = 1 to 100
J30 read room$(x)
J40 next x
JSO data .. .
J60 data . . .

and so forth

106 • ADAM: The System

The FOR in line 20 begins by assigning a value of 1 to the numeric
variable X. (You can't use a string variable with FOR.) Then ADAM goes to
lines 30 and 40. When ADAM reaches line 40, it compares the value of
the variable X to the number that follows the TO in the FOR expression
(100 in this case). If the value of Xis less than that number, ADAM will go
back to the line with the FOR. At this point, ADAM increases the value of X
by one and begins the cycle once more. The cycle will end after 100
loops when the value of X finally reaches 100.

You could do the same thing, but less efficiently, by combining IF ...
THEN with GOTO. Here's how:

]10 dim room$(100)
]15 X = 0
]20 X = X + 1
]30 read room${x)
]40 if x = 100 then goto 60
]50 goto 20
]60 end
]70 data .. .
]80 data .. .

and so forth

This program will produce the same results, but in a less efficient,
more complicated manner. Line 20 in this program is not a misprint. The
statement X = X + 1 is not an equation. This statement actually increases
the value of the variable X by 1 each time ADAM sees the program line. It
says, "The new value of X is the old value plus one." You can increase the
increment value by changing the 1 to a larger number. That wouldn't do
for this example, however.

Likewise, in the program on the previous page, you can increase the
increment amount given with the FOR. For example, if you want to
increase the incremental value to two, type:

]20 for x = 1 to 100 step 2

If you don't type the STEP # part, ADAM assumes that the step is one.
Suppose that you want to create a two-dimensional array and

program ADAM to feed data into it. This requires the use of two FOR . ..
NEXT loops, one inside the other. Since the inner loop is nested inside the
outer loop, we refer to it as a nested loop. Here is what it looks like:

Berg and Smith • 107

]new
]1 0 dim room$(20,20)
]20 for i = 1 to 20
]30 for j = 1 to 20
]40 read room$(i,j)
]50 next j
]60 next i
]70 data .. .
]80 data . . .

and so forth

This program will cycle through the nested loop twenty times for
each cycle of the outer loop. It will therefore read 20 times 20 (or 400)
pieces of information. You can even have nested loops within other
nested loops. There is no limit, but be careful; you can create a lot of work
for ADAM with just a few program lines. For instance, if you had ten FOR
.. . NEXT pairs, all nested within one another, and each only counted to
ten, ADAM would have to go through ten times ten times ten . .. times ten
(ten to the tenth power) cycles, or ten billion cycles. You might have time
for a sandwich, a good night's sleep, and a European vacation before
ADAM finished. Just remember, the total number of cycles is multiplied
for nested loops and added for loops that are in different parts of the
program.

Look at the lines to the left of the program in the previous illustration.
Notice that the nested loop falls entirely within the outer loop. If you
bracket associated pairs of FOR . . . NEXT statements, as in the
illustration, you should never have one bracket crossing another. In the
following example, the brackets do cross, indicating that the program is
faulty.

] 10 dim room$(20,20)
]20 for i = 1 to 20
]30 for j = 1 to 20
]40 read room $(i,j)
]50 next i
]60 next j
]70 data .. .
]80 data . . .

1 OR • AnAM: The Svstem

and so forth

This program will result in an error when you try to run it. It's a
common mistake that can easily be avoided just by drawing the brackets.

Subroutines
When you begin to write longer programs, you'll see certain patterns

of statements that are used repeatedly. A good example is the set of
FOR . . . NEXT loops that you just used to read an array of data. Wouldn't
it be nice just to type in the set of steps once and refer to it when needed?
That is exactly what SmartBASIC will let you do. The set of program steps
is called a subroutine, since it is subordinate to the main program.
Programmers usually put subroutines near the end of a main program
after the END statement. Subroutines are small programs on their own,
and are not accessed by ADAM unless you give a specific command. To
access a subroutine, use GOSUB XX, where XX is a number, expression
or variable that refers to a specific line number. Use the command
RETURN at the end of the subroutine to tell ADAM to return to the main
body of the program. ADAM remembers where it left the main part of the
program, and returns to the program line immediately following the
GOSUB statement.

Try this example:

]new

]10 print "SEE HOW I CAN
COUNT."

]20 gosub 100

]30 print "WASN'T THAT WO
NDERFUL?"

]40 end
] 100 for i = 1 to 1 0

]110 print " "i

]120 next i

]130 return

]run

Bera and Smith • 1 n~

ADAM should say:

SEE HOW I CAN COUNT.
1
2
3
4
5
6
7
8
9
10

WASN'T THAT WONDERFUL?

Subroutines can also be nested. That is, you can refer to a
subroutine within another subroutine. For example, add these lines to the
previous program:

]115 gosub 150
] 150 print " turn kick"
]160 return

Now run the program:

]run
SEE HOW I CAN COUNT.

1
turn kick

2
turn kick

3
turn kick

4
turn kick

5
turn kick

6
turn kick

7
turn kick

110 • ADAM: The System

8
turn kick

9
turn kick

10
turn kick

WASN'T THAT WONDERFUL

Congratulations. You've just invented a new dance.
There is still one more command that you can use when you write

subroutines into your programs. The command is POP. POP tells ADAM
to forget the point in the program from which it branched out into the
subroutine, and to return somewhere else when the RETURN statement is
executed. That "somewhere else" is the line immediately following the
very first GOSUB command in your program. Thus, if you have only one
GOSUB command, POP has no effect. Let's use POP in the example of
the nested subroutine.

]155 pop
]run

You should get something like:

SEE HOW I CAN COUNT.
1

turn kick
WASN'T THAT WONDERFUL?

Using POP too often can lead to very tangled programs, so use it
sparingly. You also need to be careful about using GOTO in connection
with subroutines. Use GOTO only to branch to program lines within the
subroutine itself, or within the main program. Don't use GOTO to branch
from the main program into a subroutine or vice versa. Such use
inevitably will cause you headaches.

Bera and Smith • 111

Multiple Branching
In SmartBASIC you can branch to many different places from the

same program line. Two kinds of statements will allow you to do this: ON
... GOSUB and ON ... GOTO. These work much in the same fashion as
GOSUB and GOTO, with which you are already familiar. They have the
added feature of allowing you to vary the place to which you want to
branch. Look at this example:

]new

]10 print "WHAT GRADE DID
YOU GET"

]20 print "IN HISTORY?"

]30 print

]40 print "TYPE THE CORRES
PONDING": print "NUMBER."

]50 print: print " A . .
1 "

]60 print " B . . 2"

]70 print " C .. 3"

]80 print " D . . 4"

]90 print" E .. 5": pr
int

]100 get X

] 110 on x gosub 200,300,4
00,500,600

]120 print: print "SAY HEL
LO TO YOUR TEACHER"

]130 end

]200 print ''l'M VERY PROUD
OF YOU."

]210 return

112 • ADAM: The System

]300 print "THAT'S GOOD."

]310 return

]400 print "YOU CAN DO BET
TEA."

]410 return

]500 print ''l'M DISAPPOINT
ED."

]510 return

]600 print "I HOPE YOU LIK
E SUMMER": print "SCHOOL."

]610 return

]run

ADAM should print:

WHAT GRADE DID YOU GET
IN HISTORY?

TYPE THE CORRESPONDING
NUMBER.

A .. 1
B . . 2
C .. 3
D .. 4
E .. 5

Suppose you got an A. Now press the "1" key. ADAM should print:

l'M VERY PROUD OF YOU.

SAY HELLO TO YOUR TEACHER.

You will get a different message for each number that you input. This is
another form of conditional branching. Each of the line numbers following
GOSUB corresponds to a different number. The first line number
corresponds to the number one, the second line number corresponds to
the number two, the third line number .. . , and so forth. The variable or

A,::,rn !:inrl ~rnith . 1 1 ':>

expression between ON and GOSUB refers to one of those lone numbers
with the corresponding number. For instance, if you were to input the
number 2, ADAM assigns the value of 2 to the variable X. Since X equals
2, ADAM will choose the second line number of those listed in the ON ...
GOSUB statement (300).

The expression between ON and GOSUB must equal a positive
whole number. It cannot be greater than the number of line numbers
listed after GOSUB.

The ON .. . GOTO statement works just like ON . .. GOSUB, except
that is doesn't branch to a line number. In the example, you could replace
line 11 O with:

]110 on x goto 200,30.0,4
00,500,600

and then replace all of the RETURN statements with GOTO 120. The
program would run just as it did before.

A similarly useful command is ONERR GOTO. This branches in only
one program line--that which follows the command. This will branch only
if an error has been made, such as running out of data, dividing by zero,
or taking the square root of a negative number. You can use this
statement to branch to another part of the program and print your own
error message to tell the user what the error was and how to correct it. At
the end of that program segment use the RESUME statement to return to
the main program. Actually, ONERR GOTO used with RESUME is very
much like the combination of GOSUB and RETURN. Here is an example:

]new

]10 input "WHAT IS THE NUM
ERATOR?"; num

J20 input "WHAT IS THE DEN
OMINATOR?"; den

J30 print

J40 on err goto 100

J50 ans= num/den

J60 print "THE ANSWER IS "
ans

J70 end

-1 -1 A _ I\ n/\ ~A - Tho Q,,c-tarn

)100 print "I CAN'T DIVIDE
BY ZERO. " : print

)120 input "WHAT IS THE DEN
OMINATOR?"; den

)130 resume

Now try to divide 100 by 0, and then by 5.

]run

WHAT IS THE NUMERATOR?100
WHAT IS THE DENOMINATOR?0

I CAN'T DIVIDE BY ZERO.

WHAT IS THE DENOMINATOR?S

THE ANSWER IS 20

With this command you can make your programs much easier to use
by predicting the kinds of errors that might occur and programming
around them.

Arithmetic Functions
You've already used the four basic arithmetic functions-addition,

subtraction, multiplication and division. Any pocket calculator can also do
them. However, ADAM has a much larger repertoire that you haven't
used yet. Let's start off with some simpler applications.

Within the confines of an IF . . . THEN statement, the equal sign has a
different meaning than when you use it to assign values to variables. This
different meaning is the one with which you usually associate the equal
sign. It compares the expressions or values on either side of it and tests
for equality. If they are equal, ADAM carries out the instructions after the
THEN. In addition to the equal sign, you can use symbols that stand for
the inequalities-less than, greater than and not equal to. Here is a table
showing all of the possibilities:

R~m, ::mrl ~mith . 11 ~

- is equal to
<> is not equal to
> is greater than
< is less than
< = is less than or equal to
> = is greater than or equal to

You can use all of these with IF . .. THEN. When the statement is true,
the instructions are followed. For instance:

]new

]10 X = 20

]20 y = 30

]30 if x = y then print 11E
QUAL"

]40 if x <> y then print 11

NOT EQUAL"

]50 if x < y then print 11L
ESS THAN"

]60 if x > y then print 11G
REATER THAN"

]70 if x < = y then print 11

LESS THAN OR EQUAL TO"

]80 if x >= y then print 11

GREATER THAN OR EQUAL TO"

]90 end

]run

ADAM will print:

NOT EQUAL
LESS THAN
LESS THAN OR EQUAL TO

Now type:

]10 X = 30
]run

116 • ADAM: The System

ADAM will print:

EQUAL
LESS THAN OR EQUAL TO
GREATER THAN OR EQUAL TO

When you compare string variables, you can use only equal (=) and
not equal (< >). The use of these functions is very straightforward and
simple; you use them after IF and the meaning is the same as in common
English.

Sometimes you need to make sure that a number doesn't have a
fractional part. You might need to refer to a line number, as with GOTO or
GOSUB, or you might need to refer to coordinates on a graph (as
discussed in the next chapter). The INT function (short for "integer") will
chop off the fractional part. For instance, INT(2.44) is equal to 2.
INT(99.99) is equal to 99. You can also use INT to round numbers rather
than just cut off their fractional tails. Just add one half (0.5) to the number
in the parentheses. Try to round off the numbers 2.4, 5.6, 99.99, and
65.49:

]print int(2.4+0.5)
2

]print int(5.6+ 0.5)
6

]print int(99.99+0.5)
100

print int(65.49+0.5)
65

As you can see, ADAM does a fine job with this. Sometimes, however,
ADAM is not completely accurate. Type:

]new
]10 printint(100)
]20 print int(100.0)
]30 print int(100.00)
]40 print int(100.000)
]run

ADAM will print:

100
100
99
100

Berg and Smith • 117

When you put two decimal places after a number, ADAM thinks that the
number is slightly smaller than it actually is. To measure that difference,
type:

]print 100 - 100.00

The answer that you get will not be zero. In fact, it is:

2.98023224 E- 08

This is very close to zero, but it could be a problem, especially when you
compare two numbers to see if they are equal. This bug apparently
occurs only when you use two decimal places, and for numbers less than
1,025. If you can, try to stick with one decimal place or three or more.

Not only can ADAM remove the fractional part of a number, it can
also remove the "sign" information (the part of the number that tells
whether it is negative or positive). ADAM can tell you the number's
absolute value. The function has the form ABS(XX), where XX is any
numerical value-an expression, a numeric variable or a number. This is
most often used to prevent errors when used with the SQR (square root)
function. If you try to take the square root of a negative value, ADAM will
give you an error message. To get around this, take the absolute value
before taking the square root:

]print sqr(abs(-4))

When you type this, ADAM will print:

2

This prevents the error message, but it isn't exactly correct. Negative
numbers actually have square roots, called imaginary numbers. Though
you will probably never need to use imaginary numbers, they do indeed
exist, and an I or a J is placed after the number so you'll know that it's
imaginary. ADAM cannot deal with these numbers directly. With the help
of one more function, however, ADAM can. This new function is the SGN
or "sign" command. SGN(XX) will tell you if the value XX is positive,
negative or zero. It discards the information that the ABS function saved.

ABS and SGN are complementary. Each keeps the information that
the other throws away. You can therefore break any number into two
components-the magnitude and the sign. With this in mind, let's go
back to our square root problem. First, break the number into compo
nents. Then take the square root of the absolute value. If the sign is
positive, you have the answer. If the sign is negative, however, you merely

◄ ◄ n /\ n /\ r. ,1 . Th,... C, ,.,.to rn

need to put the letter i after the square root of the absolute value. Here is a
subroutine that will take the square root of any value, positive or negative,
and print the square root:

]500 y = sqr(abs(x))

]510 z = sgn(x)

]520 if z = -1 then print
"THE SQUARE ROOT IS II y"
i11

: goto 540

]530 print "THE SQUARE ROO
TIS II y

]540 return

Suppose you write the following program to access the subroutine:

]10 input "GIVE ME A NUMBE
R: "; X

]20 print

]30 gosub 500

]40 end

Now find the square roots of 25, 36, -16, and -102400:

]run
GIVE ME A NUMBER: 25
THE SQUARE ROOT IS 5
]run
GIVE ME A NUMBER: 36
THE SQUARE ROOT IS 6
]run
GIVE ME A NUMBER: -16
THE SQUARE ROOT IS 4i
]run
GIVE ME A NUMBER: -102400
THE SQUARE ROOT IS 320i

The last answer makes one wonder whether BMWs are imaginary. You
might never hear about an imaginary number again, but the next time
someone tells you that you can't take the square root of a negative
number, you'll know something he doesn't.

Berq and Smith • 119

SGN is also useful for branching. Suppose you write a financial
program that will tell you to go see a bankruptcy lawyer. When your net
worth is less than zero and you're bankrupt, the amount by which your
liabilities exceed your assets is not a determining factor. You can then use
the SGN function to test your net worth at any time.

ADAM doesn't think of numbers and characters the same way you
do. ADAM converts everything into a special set of numbers called ASCII
(pronounced "ask-key") codes. There are about 100 of them and each
one corresponds to one of the characters on the keyboard (including the
various <CONTROL> LETTER combinations). You will rarely need to
concern yourself with this, but ADAM can tell you the ASCII codes if you
ever do. That way you won't have to try to get a copy of the conversion
table and do your own translation. To find the ASCII code that cor
responds to a particular character, in this case the letter M, type:

]print ASC("M")

ADAM should print:

77

If you want to find the character that corresponds to a particular
ASCII code, use the CHA$ command. For example, the character
corresponding to the ASCII code 42 is an asterisk.

]print chr$(42)
*

That's about all you need to know for now about ASCII codes. Just
remember these two commands if you ever need to translate back and
forth.

ADAM also contains a random number generator. This is important
when you want to make ADAM less predictable in games or educational
"flash card" programs. The function has the format RND(XX), where XX is
a numerical expression or variable. Mathematicians call the XX part of the
command the kernel. ADAM is supposed to generate a different stream
of random numbers for each kernel, but it won't. In fact, ADAM will
generate the same stream of numbers each time you run the program.
Each number in the stream may be individually random, but the stream
itself can be predicted. You can get around this flaw by creating a loop
that generates random numbers at the beginning of the program but
doesn't print them. You can then generate random numbers by truncating
different qualities of numbers from the beginning of the stream of
numbers. To illustrate:

1 ?O • Af)AM: ThP. Svstem

]new

]10 input "WHAT IS THE KER
NEL? ";k:?

]20 for x = 1 to 5

]30 print rnd(k)

]40 next x

]50 end

ADAM will print out the same stream of random numbers no matter which
positive value you input.

]run

WHAT IS THE KERNEL? 33

.732004777

.425420012

.0831831896

.705190617

.69693043

Now try a different kernel:

]run

WHAT IS THE KERNEL? 250

.732004777

.425420012

.0831831896

.705190617

.69693043

The values are the same, although they shouldn't be. Now try this
program:

]new

]10 input "WHAT IS THE KER
NEL? ";k:?

] 11 for y = 1 to k

]12 z = rnd(1)

Berg and Smith • 121

]13 next y

]20 for x = 1 to 5

]30 print rnd(1)

]40 next x

]50 end

Now run the new program with kernels of 1, 3, and 5:

]run

WHAT IS THE KERNEL? 1

.425420012

.0831831896

.705190617

.69693043
> > > .650009534

]run

WHAT IS THE KERNEL? 3

.705190617

.69693043
> > > .650009534

.141860894

.720451122

]run

WHAT IS THE KERNEL? 5

> > > .650009534
.141860894
.720451122
.137060179
.963411333

The "arrow,">>>, points out the same number in each of the runs.
Notice that as you increase the size of the kernel, the number of random
numbers ahead of it is decreased by the kernel's increase. This shows
you that the same stream of numbers is actually being generated each

time. You get unique streams by discarding a certain number of values
from the stream's beginning. The major disadvantage of this method is
the time lag that a large kernel will cause as ADAM performs the first FOR
... NEXT loop. You haven't got much of a choice, though, if you need a
stream of random numbers.

You may have noticed that the random numbers are always frac
tional, and they all fall between zero and one. In order to generate
streams of larger numbers, simply multiply the random numbers by a
factor equal to the largest possible value, and then round off the fractional
part with the INT function. For example, suppose you want to generate a
stream of random numbers that can range from O to 1000. Just change
the previous program with:

]30 print int(rnd(1)"1000+
0.5)

If you use a kecnel of 5, you will get this stream:

650
142
720
137
963

If you don't want zero as your lower boundary, just add the number
you want that boundary to be. The number by which you multiply the RND
function will be the difference between the upper and lower boundaries.
The one half is added so that you will get rounded values instead of
truncated values. These steps will show you how:

]22 input "LOWER BOUNDARY?
";lower

]24 input "UPPER BOUNDARY?
";upper

]26 range = upper - lower

]3'0 print int(rnd(1)*range
+0.5)+Iower

In this example the lower boundary should be less than the upper
boundary. Both boundaries can be negative numbers, however.

We will now discuss the calculation of logarithms and exponential
values. If you don't understand them you may want to skip to the section
on defining your own functions.

Berg and Smith • 123

An exponential value is a number raised to the power of another
number. The exponent with which you are most familiar is 2. When a
number is raised to the power of 2, we say that it is squared. When the
exponent is 3, the number is cubed. There aren't any common terms for
other exponents. The inverse of raising a number to a power is taking that
number's root. You've already learned how to tell ADAM to find the square
root of a number.

A related concept is that of the logarithm. The three are related as
follows:

23 = 8 (exponentiation-2 raised to the power of 3)

log2 8 = 3 (taking the logarithm of 8 with a base of 2)

3 v 8 = 2 (finding the third (cube) root of 8)

ADAM already has functions that will calculate any powers, find
square roots of positive numbers, and take the logarithms (using a base
of e, always lower-case) of any positive number. You can create your own
functions to calculate logarithms with other bases and to find other roots.

To raise a number to a power, just type an up-pointing arrow
between the base and the exponent. The arrow (not one of the cursor
keys) is located just above the return key. The base and exponent can be
any numeric values. Type:

]new
]x = 4
]y = 5
]print x 11 y

ADAM will print:

1024

which is exactly the number you get if you multiply 4 (the base) by itself 5
(the exponent) times. You could do this yourself. Now try a more difficult
example:

]print 2.3 11 6. 78
283.474977

You might have some difficulty calculating an answer like 283.474977.
That's why you have ADAM, so you won't ever have to.

1?.1 . AnAM· ThP. Sv~tP.m

You've been exposed to the SQR function earlier, so let's go on to the
logarithm function, LOG(XX), where XX is any positive numeric value.
When you use this function, ADAM assumes that the base is a strange but
useful number called e. e is a transcendental number, like pi (used to
find the areas of circles). e is widely used in calculus and in the
mathematical sciences. It is approximately equal to 2.718282.

One of the tricks of logarithms allows you to calculate quickly the
factor that will convert logarithms with one base to another. Here are a
formula and a table that you can use with ADAM:

Let alpha be the new base.
Let X be the number whose logarithm you are calculating.
Then:

logalpha (x) = loge (x) / loge (alpha)

LOGARITHM CONVERSION TABLE
1 /LOGe (BASE)

BASE -------
2
3
4

10

1.442695
.910239
.721348
.434294

To use this table, multiply the value of LOG(XX) by the number in the
right-hand column for the base you want to use.

Defining Your Own Functions
SmartBASIC allows you to create your own functions. You can do this

with the DEF FN command followed by a name that you give to the
function and an expression or equation which the function will represent.
The function acts almost like a tiny subroutine. For instance, let's create a
logarithmic function having a base of 10. We'll call it LG and use it to
stand for the equation listed above the logarithm conversion chart.

]new
]100 def fn lg(x) = log(x)/log(10)

Berg and Smith • 125

Now type:

)110 printfn lg{100)
)200 end
)run

ADAM should print:

2

which is the logarithm of 100 with the base of 10. The X in the statement is
just a dummy variable-it doesn't have any particular value.

Let's define another one, called RT, which will calculate the cube
root of a positive number.

)110 def fn rt{x)=2.718282
"{log{x)/3)

The 2. 718282 is the value of e. You can change this to find any root by
replacing the 3 with that number. For example, substituting a 4 will make
the function find the fourth root of a number.

Let's create a simple function that rounds numbers. We'll call it
ROUND.

)120 def fn round{x)=int{x
+0.5)

Here are some rules to remember when you create functions.
1. ADAM looks only at the first two letters of the function name. If

later in the program you define another function with the same two
beginning letters, ADAM will ignore the first one.

2. You can only define functions in the program mode, never in the
immediate mode. However, a user-defined function that has been
created in a program can be used in the immediate mode before NEW,
CLEAR or LOAD commands are given.

3. You must make sure that all of the values in the DEF FN statement
have been defined before invoking the function.

4. You can use previously defined functions in the DEF FN statement
when defining a new function. The new function can't be used in the
definition, of course.

5. The entire DEF FN statement must appear on a single program
line.

ADAM already knows one trigonometric function-the sine function.
You may ask ADAM for the sine of a number by typing:

]print sin{X)

126 • ADAM: The System

Since ADAM doesn't have an inverse sine function (arcsine), here is a
way to make your own:

]100 def fn isin(x)=x+(x"3
/6+x" 5*3/40+x" 7*15/336)

This approximates the first few terms of an exponential series that
calculates the inverse sine of a number. Next we will similarly define the
itan (inverse tangent) function:

]105 def fn itan(x)=x-x"3/
3+x"5/5-x"7/7

You can now use these functions, along with the ones ADAM already
knows, to calculate the other trigonometric functions, such as icos
(inverse cosine), tan (tangent), sec (secant), csc (cosecant), and cot
(cotangent):

]110 def fn icos(x)=3.1415
926/2- isin(x)

]120 def fn tan(x)=sin(x)/
cos(x)

] 130 def fn sec(x) = 1 / cos(x
)

]140 def fn csc(x)=1/sin(x
)

] 150 def fn cot(x) =cos(x)/
sin(x)

The cotangent function can also be defined as follows:

] 150 def fn cot(x) = 1 /tan(x
)

You are now prepared to solve just about any trigonometric prob
lems you come across. This was the toughest chapter in the book, since
you covered a lot of material very quickly. Now get ready to explore the
fascinating world of graphics and games.

□- .. - ---J t"'-!.1.l-.

CHAPTER9
GRAPHICS

If you've played Buck Rogers: Planet of Zoom or any other games on
ADAM, you may already be wondering how programmers create games.
What do these games have in common with the simple programs you've
learned to write? Games are just programs that provide a great deal of
interaction with the player. Arcade style games use one thing that you
have yet to learn, however. They use the graphics capabilities of the
computer to create the colorful, changing images of the television screen.
At first you may not think that you can create anything so complex, but
with ADAM you can easily construct shapes and figures on the screen
and learn how to move them around to create your own games or works
of art.

The term "graphics" comes from a Greek word meaning "to draw" or
"to write." You can see a form of the word in "telegraph" (to "write" from
afar) and "phonograph" (to "write" sound). With ADAM's graphics, you
can draw directly on the screen with light that is controlled by the
commands you give ADAM.

So that you can tell ADAM precisely where to draw a line or a point,
ADAM invisibly divides the screen into tiny rectangles, each with its own
name. ADAM automatically creates an array with each member of the
array corresponding to a particular rectangle on the screen. You do have
something to say in this matter, however, for ADAM has two graphics
modes-low resolution and high resolution. • The main differences be
tween the two are the amount of memory required to maintain the array,
the size and number of rectangles, and the commands that must be
used. The high resolution graphics mode divides the screen into a larger
number of smaller rectangles than the low resolution mode. High
resolution demands more memory to maintain than low resolution. It
therefore leaves less working memory for you to use for programming,
while allowing you to create smoother, more intricate shapes and
designs. We'll begin with the simpler of the two, the low-resolution mode.

□-.-- __ _. r"--!&.1-

Low-Resolution Graphics
In this mode, ADAM divides the screen into 1600 rectangles,

organized into 40 columns and 40 rows. Each of these is called a
coordinate. The coordinate is described by two whole numbers or
numeric variables separated by a comma. The first number or variable
refers to the column and the second to the row, and they can range from
0 to 39. For example, the coordinate 20,30 refers to the rectangle in
column 20 and row 30. Once you understand this system, you'll have no
trouble telling ADAM what you want.

Begin by telling ADAM to enter the low-resolution graphics mode by
typing:

]gr

The GR command is simply an abbreviation for "graphics." Suddenly the
screen will go blank, but any programs you have in ADAM's working
memory will still be there. If the programs are very long, save them first,
since the remaining amount of memory might not be sufficient.

The screen is now composed of the invisible grid and four rows at
the bottom of the screen where you can type program lines and
commands. Notice that the cursor has moved there already, awaiting
your next command. At this point you might want to select the color with
which you want to draw. If you have a black-and-white TV, the choice of
different colors will result in various shades of grey. If you are using a
color set, however, you can take full advantage of the choice. ADAM
allows you to choose any of 16 different colors. You can refer to each one
by a number, or color code, according to the following table:

COLOR CODE TABLE

0-black
1 - magenta
2-dark blue
3-dark red
4 - dark green
5-grey-1
6 - medium green
7 - light blue
8 - light yellow
9 - medium red

10-grey-2

1~0 • ADAM: The Svstem

11 - light red
12 - light green
13 - light yellow
14-cyan
15-white

The actual shades of these colors will vary with individual television
sets and color setting. For now we'll stick with these names. Let's choose
light red to start.

]color= 11

Now you can see if ADAM followed your command by typing:

]plot 20,30
]plot 20,20
]plot 20, 10

You should now see three small, light red rectangles appear in a vertical
line near the middle of the screen. The PLOT command tells ADAM to
change the color of the rectangles to the last color that you told ADAM to
use. You can use COLOR and PLOT in programs just like the commands
you already know. Try this simple program:

]new
]10 color= 15
]20 for count = 1 O to 30
]30 plot 20,count
]40 next count
]50 end
]run

ADAM should draw a vertical white line over the points that you
plotted previously. Notice that the colors don't mix; they remain pure.
When a new point is plotted over an old one, the color always changes to
the last color told to ADAM.

You can use another command to do exactly what the last program
did. This is the VLIN command, and with it you can tell ADAM to draw a
vertical line. For example, you can replace the old program with a new
one.

AArn ~nrl ~mith . 1 ~ 1

]new
]10 color= 7
]20 vlin 10,30 at 20
]30 end
]run

The white line should suddenly turn light blue (color= 7). ADAM has just
drawn this new blue line over the white one. The VLIN command told
ADAM to draw a vertical line from row 10 to row 30 on column 20. Now
type:

]15 for count= 1 to 10
]16 line= 4 * count - 4
]20 vlin 0,39 at line
]25 next count
]list

ADAM will list your program steps:

]10 color= 7
]15 for count= 1 to 10
]16 line= 4 * count - 4
]20 vlin 0,39 at line
]25 next count
]30 end

Be sure to use <CONTROL>S to stop ADAM from scrolling the first few
lines past the text region of the screen. Then press <CONTROL>S to see
the last few lines. Now run the program. ADAM will create 10 vertical
lines, beginning with column O and ending with column 36. It will look like
a forest after a fire.

Now how can you turn this into a grid with horizontal lines as well as
vertical ones? You guessed it: use the HUN command. This works exactly
like VLIN except that the lines are drawn horizontally. Try this:

]list 20

ADAM responds with:

]20 vlin 0,39 at line

Let's edit this line by changing the VLIN to HUN using the shortcut
method you previously learned. Move the cursor until it is under the V in
VLIN, replace the V with an H, scroll the cursor to the end of the line, and
hit < RETURN>. If you list line 20, it should now read:

]20 hlin 0,39 at line

132 • ADAM: The System

rgdir
Rectangle

When you run the program, ADAM will create a set of horizontal lines and
complete the grid.

Before you move on to new material, try this little program:

]new
] 10 for i = 0 to 15
]20 color= i
]30 vlin 0,39 at i + 5
]40 next i
]50 end

You will now see the entire spectrum of colors.
There is only one more statement that you need to know when using

low-resolution graphics. It is called the SCAN function. Like PLOT, you
need to follow it with two numbers or numeric variables, separated by a
comma, so that ADAM will know which rectangle to reference. Unlike
PLOT, you need to put parentheses around the numbers or variables.
SCRN instructs ADAM to look at the designated rectangle and tell you its
color. (ADAM will give you a color code; you have to look it up on the
table yourself, unless you write a short conversion program.) For in
stance, type:

]print scrn (20,20)

and ADAM will print:

7

This corresponds to light blue, the color of that rectangle. This is a very
subtle function, and you can use it for some advanced programming.

You now know everything about low-resolution graphics. When you
want to go back to the text mode, simply type in the command TEXT and
ADAM will return you to the standard text mode that greets you when you
first load SmartBASIC. The screen will be blank except for the cursor. This
is also a fast way to erase your diagrams. Just type:

]text
]gr

and you'll be back in the low-resolution graphics mode with a solid black
screen. Try this, and then type in the following program:

]new
]10 x = int(rnd(1)*37)+1
]20 y = int(rnd(1)*37)+ 1
]30 color = 11
]35 rem THIS PLOTS THE

Berq and Smith • 133

!
i
I

I
I
\
I

]36 rem CENTER
]40 plot x,y
]50 color = 13
]55 rem THIS PLOTS THE
]56 rem PETALS
]60 plot x+ 1,y
]70 plotx-1,y
]80 plot x,y+ 1
]90 plot x,y-1
]100 goto 10
]run

Let's hope you like flowers. {That's what they're supposed to be.)
ADAM should begin to draw a field of sunflowers and will continue
drawing sunflowers until you stop the process by typing <CONTROL>C.
Notice that this locks ADAM into one of those nasty infinite loops. The
reason for multiplying the RND(1) by 37 is to generate a set of random
numbers ranging from Oto 37, since RND(1) can range from Oto 1. We
used the INT function, because ADAM can't accept numbers with
fractions as coordinates. The reason for a range of 37 numbers is to allow
room for the flowers' petals. Adding 1 to the coordinate (lines 1 0 and 20)
shifts the range from 0 - 37 to 1 - 38. This leaves room for petals along
all four borders of the graph region.

You can create your own flowers, dogs, fish, trees, and so forth. Use
your imagination.

High-Resolution Graphics
For detailed drawing, you must use the high-resolution graphics

mode. In this mode ADAM has 40,960 tiny rectangles that you can
access. You will have 256 columns and 160 rows at your disposal. The
rectangles will be so small that they will actually appear only as points of
light. And if that is not enough, ADAM has a second high-resolution mode
that will incorporate the four-line text region at the bottom of the screen
into the graphics region, giving you 32 more rows to access. It is in this
second high-resolution graphics mode that most of ADAM's arcade-style
games are played.

The commands that you use to get into the two modes are HGR and
HGR2, respectively. Before you enter one of them, review the flower
program in the previous section. Now you will learn how to alter it so that it

134 • ADAM: The System

will work in the high-resolution modes. The high-resolution commands
equivalent to COLOR and PLOT are HCOLOR and HPLOT. They work in
very nearly the same way. The color codes, though, are different. They
are:

HIGH-RESOLUTION
COLOR CODE TABLE

0-black 1
1-green
2-violet
3-white 1
4-black2
5-orange
6-blue
7-white 2
8-brown
9-dark blue

10-grey
11 -pink
12-dark green
13-yellow
14-aqua
15- magenta

Now edit the flower program, changing COLOR to HCOLOR, PLOT
to HPLOT, and the range of possible values in the statements containing
the RND function. It will be much easier to do the editing while you are in
the text mode. The resulting program should be:

]10 x = int(rnd(1)*253)+1
]20 y = int(rnd(1)*157)+1
]30 hcolor = 11
]35 rem THIS PLOTS THE
]36 rem CENTER
]40 hplot x,y
]50 hcolor = 13
]55 rem THIS PLOTS THE
]56 rem PETALS
]60 hplot x+ 1,y
]70 hplot x- 1,y
]80 hplot x,y+ 1
]90 hplot x,y-1
]100 goto 10

Bera and Smith • 13S

Now type:

]hgr

The screen will go black. You are now in the first high-resolution mode.
Run this program and compare it with low-resolution graphics. The
difference is astounding. Type <CONTROL>C when you want ADAM to
stop.

You should be aware that colors don't always remain pure in the
high-resolution modes. You often get a result similar to the one you get
when you wash a new pair of blue jeans with a white shirt-the color may
"bleed" into the next tiny rectangle.

There are no commands in these modes analogous to the HLIN,
VLIN and SCRN functions that you used in the low-resolution mode. To
create lines, use the HPLOT command in a slightly different way. You
already know how to plot a single point. For instance, to plot a white dot
near the center of the screen, simply type:

]hcolor = 3
]hplot 140,80

If you type

]hplot 140,159 to 140,0

ADAM will plot a vertical white line near the center of the screen. You only
need to provide the end points of any line segment and ADAM will draw
the line between those two points. To create a vertical line, keep the first
numbers of the two pairs of coordinates the same. Keeping the second
numbers the same will create a horizontal line. Unlike the low-resolution
mode, the lines don't have to be vertical or horizontal. Try drawing the
following diagonal line:

]hplot 0,0 to 255,159

Try the following program, which will draw an interesting picture using
diagonal lines:

.. ,., ,,...

]text
]new
]10 hcolor = 5
]20 for count1 = 1 to 80
]30 x = count1 + 40
]40 hplot 140,80 to 180,x
]50 next count1
]60 hcolor = 6

"f"'\ A f. A, Th,-, C"ctorn

1

]70 for count2 = 1 to 80
]80 y = 180 - count2
]90 hplot 140,80 to y,120
]100 next count2
]110 hcolor = 8
] 120 for count3 = 1 to 80
]130 z = 120 - count3
]140 hplot 140,80 to 100,z
]150 next count3
]160 hcolor = 14
] 170 for count4 = 1 to 80
]180 a= 100 + count4
]190 hplot 140,80 to a,40
]200 next count4
]210 end
]hgr

This should result in a colored square composed of diagonal lines
appearing near the center of your screen. Create some of your own
images until you feel comfortable using ADAM's graphics capabilities.

Game Controllers
ADAM comes with two game controllers. They plug into the right side

of the console and provide a convenient way for you to input cursor
control information rapidly. When you press the joystick on top of the
controller from side to side, you are sending a signal to ADAM. That
signal can have values ranging from 0 to 255. (Notice that this cor
responds directly to the column numbering in the high-resolution graph
ics mode.)

You can determine that value with the POL command. Since you
have two controllers, ADAM refers to the first controller by putting a zero
in parentheses after the POL function. A one in parentheses refers to the
second game controller. Type:

]print pdl(0)

ADAM will print the number corresponding to the position of the first
joystick. Type:

]print pdl(1)

Berg and Smith • 137

ADAM will print the number corresponding to the position of the second
joystick. This is the function ADAM used to determine if the joystick is in
the right position to blast an alien spacecraft when you play the Buck
Rogers game.

High-Resolution Shapes
ADAM will also allow you to create shapes and store these images

for future use. Creating them requires information that is not yet available.
This information concerns the codes necessary for direct access to
specific memory locations. The concept behind their creation is complex.
With any luck, Coleco will soon publish the necessary information.
Although you won't learn how to create a "shape table" here, you might
want to be aware of some of the important points. In the future you may
want to attempt to use this feature, especially if you ever want to create
your own games.

You could begin by defining a set of shapes-triangles, squares,
trapezoids, and so forth-and then storing those shapes in ADAM's
memory. You could then instruct ADAM to draw those shapes in any size
(with the SCALE command) and in any orientation (with the ROT
command). In game applications, you might define shapes that you want
to use to represent space ships and asteroids. You could then manipulate
them so that they appear to move. Getting closer and larger, then farther
and smaller, rotating clockwise, then counterclockwise.

Youngsters of all ages are learning to use these techniques to design
games. Some make thousands of dollars doing it. But they're not all
geniuses; if you advance one step at a time, you too will learn how to
make ADAM perform all sorts of wonderful and interesting tasks. It just
takes patience and practice.

138 • ADAM: The System

CHAPTER10
PROGRAMS

To program, or not to program-for years, ever since the first home
computer was invented in the garage of a California hobbyist, computer
buffs have debated whether ordinary users of machines like ADAM
should learn to program. Some people argue that in the not too distant
future computer users will be able to buy whatever program they need
right off the shelf. Indeed, thousands of computer programs are already
commercially available. Their applications range from word processing
and filling out tax forms to keeping tabs on the family budget. In a sense,
buying ready to go software has become as easy as going to the local
computer store.

However, there is another school of thought that says that to
understand computers thoroughly, one must program. It is only by
learning to program, the argument goes, that a user can grasp the true
computing power of a machine like ADAM. It is only by reading through a
program step by step, pursuing the logic, and following the reasoning,
that a beginning computer user can understand how a computer thinks.

It is in this spirit that we offer you a group of elementary programs in
SmartBASIC. Our feeling is that by providing some already written, ready
to go programs that do some pretty amazing things, we achieve two
goals. First, we show you how useful SmartBASIC can be when it is
applied in a program. More important, once you work with our programs
and see how practical SmartBASIC and ADAM can be, you will probably
become as enthusiastic as we are about ADAM and will want to write your
own programs to do the specific jobs that you need done. You'll soon
learn that SmartBASIC can be used for all sorts of applications- for the
home, office or school.

To get you started, we've provided eight different programs, each
designed to do a specific job much more quickly than you could on your
own. One program, COMPOUND INTEREST, will automatically compute
the interest earned on an initial amount of money deposited in a bank.
You can use this to watch your money grow over time. Another program,
COLLEGE TUITION, will automatically figure how much money you

should be putting aside each year to save for your child's college
education. Other programs compute monthly payments on a home
mortgage, convert foreign currencies to United States dollars, balance
your checkbook, and teach your children arithmetic. The only real limit to
how you can use SmartBASIC is the breadth of your imagination.

Just as important is the fact that all of the programs that follow have
been written specifically for ADAM. Unlike generic programs that must be
adapted to work on a given machine, these programs will work im
mediately on ADAM. You don't have to make any changes at al l to get
started. All you have to do is type in the programs exactly as written, type
in RUN, and away you go-you're computing. It's that easy!

Prepare yourself for one of the most exciting aspects of computers
by brushing up on your knowledge of the SmartBASIC commands
outlined in the preceding chapters. You might want to review some of the
brief programs we provided earlier before plunging into the more detailed
programs ahead, but don't waste too much time reviewing. Chances are
you'll want to put ADAM to work almost immediately. With any luck at all,
you'll be programming ADAM like a professional before long, and in
doing so you will have opened up a whole new world of computing that
will educate you, free you from onerous chores and computations, and
even, in the case of financial management programs, put money in your
pocket.

How to Use the Programs
Each of the eight programs is described in four sections.
The first, Purpose, tells you precisely what the program does and

how you can use it to your best advantage.
The second section, called How to Run It, explains what happens

when you run the program and provides descriptions of information you
must input as the program is executed. It's important that you give your
responses precisely as described, taking special care to use capital
letters and correct punctuation.

The third section, entitled SmartBASIC Listing, provides a printout of
the SmartBASIC program itself. You'll recall from earlier chapters that a
SmartBASIC program is nothing more than a list of instructions that tells
ADAM what to do. It's crucial, therefore, that you type in the program
exactly as written.

140 • ADAM: The System
I'

rgdir
Rectangle

In the fourth section, entitled Sample Output, we show you what you
should see on your screen once you type RUN to execute the program.
You can check if your own program is running correctly by comparing the
output on your screen with the sample output provided in the text.

If you're just getting started with programming, it's probably best to
read through all four parts of a program before setting down to type in the
individual program lines. Once you understand what the program does
and what you have to do to make it run correctly, enter the NEW
command to erase any program that may currently be in ADAM's
memory. Then, using the SmartBASIC Listing section as a guide, begin
typing in the program, taking extra care to get all the letters and
punctuation correct. Once you've finished typing in the text, immediately
store the program in ADAM's memory so that you don't lose it if the power
goes out.

Before running the program, it probably pays to get a listing of it
using SmartBASIC's LIST command. This way, you can be sure that what
you entered is precisely what appears in the book. Don't forget: Use
capital letters where they are requested, and try not to confuse the letter I
with the number 1 or the zero with the letter 0.

Now run the program. Your result should be pretty much the same as
what appears in the Sample Output section of the text. If that's the case,
congratulations! You've just written and executed your first applications
program in SmartBASIC. If you get an error message-or if the output is
different from ours-try reading through the program line by line, looking
for spelling errors, transposed words, incomplete commands or other
typos. Once again, make sure you've used all proper punctuation and
have capital letters when called for.

If your program still doesn't work correctly, try running through the
reasoning of the program out loud. Consider each line of the program
individually, making sure that you understand what the line is telling
ADAM to do. Are you sending ADAM the right message? If not, rewrite the
line. You might try making a flow chart listing the processes ADAM goes
through in the course of your program.

If that doesn't work, try using the TRACE/NO TRACE command
described in the sections on SmartBASIC. The TRACE command shows
the order of the lines ADAM reads as it executes your text.

If you still can't get your program to work properly, don't despair.
There is still a solution. Try inserting a PRINT statement midway in your
program instructing ADAM to print out the value of all variables. If ADAM
prints the correct values, you know that your bug lies below the PRINT
statement. If the values are wrong, you know the problem lies above the
PRINT statement. You then can insert another PRINT statement to home

□---- ---J C"-:~1-

in on your problem. Eventually, you will be able to focus your debugging
efforts on a small section-say, five lines--where the error seems to be
coming from. From that point, it should be easy to pinpoint the problem
and to root out the rascal. Removing the kinks from even a complicated
program doesn't have to be hard.

However, since all of the following programs have been tested to
work correctly on ADAM, the first piece of advice is most important: Type
the programs in correctly and they will work from the start. This holds true
not only for our programs but for any others you buy or borrow from a
friend. Follow the text verbatim and it should work. If you do this, you'll
spare yourself a lot of debugging time, and you'll have more time to enjoy
ADAM.

LOAN AMORTIZATION
Purpose: In these days of rising prices and volatile interest rates, it's

important to keep track of expenses. For families and individuals alike,
one of the most common expenses is the monthly payment on an
installment loan-a home mortgage, a note on a boat, a car payment or
some other type of long-term 1.O.U. Figuring out the monthly payment on
a loan can be a complicated affair, until now the preseNe of bankers and
accountants. ADAM can automatically compute the monthly payment,
including principal and interest, needed to pay off most common
consumer loans. The program has been written to provide the monthly
payment on a car loan or mortgage, but it can be used to figure out the
monthly payment on any type of obligation-a student loan, a home
improvement loan, even a debt between friends.

How to Run It: ADAM will ask you a series of questions regarding
the terms of your loan-the amount you would like to borrow, the down
payment you wish to make and the annual interest rate you wish to pay.
Answer the questions exactly as you would if you were applying for a loan
from a neighborhood savings association. To be sure the program runs
properly, follow these guidelines:

1) Don't put dollar signs or commas in numbers when ADAM asks
for dollar amounts. For example, the amount $10,000 should be typed
into ADAM as 10000, the amount $25,000 as 25000.

2) When ADAM asks for the annual interest rate you'd like to pay on
your loan, type in a whole number, not a percentage or fraction. For
example, when ADAM asks for the interest rate on a 12 percent loan, it
should be described simply as 12, not 12/100 or . 12. It's all right to have a
decimal in a percentge, though, such as 13.8 percent.

3) In the output, ADAM will tell you the monthly interest rate you're
paying on your outstanding debt. Here decimals are used to express
whole percentages. If the monthly interest rate is 3 percent, ADAM would
type this as .03. A monthly rate of 12 percent would be characterized as
.12.

COMPOUND INTEREST
Purpose: Mutual funds, money market accounts, Treasury bills,

certificates of deposit-today one has only to open the financial pages to
see the myriad investment options available. Each choice brings with it
different minimum investment requirements, a different interest rate
earned, and different compounding periods (compounding refers to the
fact that investors can earn interest on their interest). How is a saver to
choose among this confusing array of investment vehicles? One answer
is the program below. When you input information about the terms of your
investment, ADAM will automatically show how your money grows over
time as you earn interest. By running the program repeatedly, you can
easily compare different investments.

How to Run It: ADAM will ask you a series of questions regarding
the investment you're considering , such as the amount of money
invested, the interest you will earn, how often your interest will compound
(once a year, semiannually, every day), and how far out in time you would
like calculations. Follow these guidelines to make the program work as
meant:

1) Type in dollar amounts as full numbers without dollar signs or
commas. For example, type 10000 for $10,000, 20000 for $20,000.

2) When ADAM asks you how much interest you will earn on your
investment, type in the full number with a percentage sign. For example,
type 10 for 10 percent. It's acceptable to have a decimal point in your
interest rate, i.e., 12.3 percent.

3) When ADAM asks how many times a year you'd like your interest
to compound, use a number, not words. For example, semiannual
interest would be characterized as 2, monthly compounding as 12.

COLLEGE TUITION
Purpose: For many couples, financing a child 's higher level educa

tion can be as difficult as paying high doctor bills or a huge mortgage. It's
enough to break the budget even of wealthy families. Fortunately, there is
an answer: financial planning. By putting aside money now and saving
each year, it's possible to accumulate a tuition pool large enough to pay
off those big school bills when your child goes to college. How much
should you be saving each year? The following program will tell you.
ADAM will ask you a series of questions regarding your school b ills. It will
then compute the yearly payment you should make to a savings account
to accumulate the tuition funds you will need.

How to Run It: To figure out what the yearly deposits to a college
savings plan should be, ADAM needs to know certain information about
your child's educational plans. The computer will pose a group of
questions-when your first tuition bill must be paid, how much tuition will
be, and at what rate your savings will earn interest. The following
guidelines will assure that the program works properly.

Berg and Smith • 143

1) Type in dollar amounts as whole numbers without commas or
dollar signs. $10,000 should be typed in as 10000, $25,000 as 25000.

2) When ADAM asks for the interest rate earned, use whole num
bers with decimal places if necessary. 12. 75 percent, for example,
should be typed in simply as 1275.

3) The program assumes that interest on your savings compounds
yearly.

FOREIGN CURRENCY CONVERTER
Purpose: What is the exchange rate between the French franc and

the U.S. dollar, or between the West German mark and the U.S. dollar?
Regular travelers always ask questions like these, and knowing how
much your money is worth is invaluable in computing costs abroad. The
program below will help you do just that. When you input the country for
which you want information, ADAM automatically responds with the name
of the currency for that country and the current exchange rate. You must
input the exchange rates periodically in the DATA statements at the end
of the program to reflect current market conditions. The DATA statements
are set up to express foreign currency per U.S. dollar. Once you know the
exchange rate, ADAM will ask you if you have a foreign price you'd like
converted to dollars.

How to Run It: Always remember to type in the name of the country
in capital letters, and don't use informal titles: Use BRITAIN for England,
WEST GERMANY for Germany. Finally, don't be afraid to use decimals in
foreign currency amounts; ADAM recognizes those, too.

CHECKBOOK BALANCE
Purpose: It's a chore hardly anyone likes, but balancing your

checkbook is crucial. After all, it's only by reconciling the balance in your
monthly bank statement with your checkbook that you can be sure your
financial records accurately reflect what you have on deposit. If you're
like most people, chances are you get headaches each month trying to
make things match. Well, consider your checkbook balancing troubles
over. Below you'll find a program that will balance your checkbook for
you. By asking you a series of questions about your account, ADAM
computes the sum of all charges and deposits not yet recorded by the
bank and prints out a personalized worksheet balancing your account.
This worksheet is similar to that found on the back of most bank
statements.

How to Run It: To balance your account, ADAM needs information
on deposits not yet recorded by the bank, outstanding checks, and other
debits and credits that you know about but that the bank hasn't yet taken

14.4. . AnAM· ThP. ~v!=:tP.m

into account, for example, accrued interest. ADAM will ask you a number
of questions regarding these matters; answer them as you'd normally
respond, keeping these guidelines in mind:

1) When ADAM asks for the number of checks outstanding, it
doesn't mean the amount the checks were written for, but the number of
checks out. For example, if you have three checks outstanding-one
written for $200, a second for $250 and a third for $100-the answer to
the question, "How many checks do you have outstanding?" is three.
Later ADAM will ask you to input the amount of those checks.

2) A similar rule holds for unrecorded deposits-ADAM will first
want to know the number of deposits not yet posted, then their amounts.

3) When ADAM asks you for information on miscellaneous charges
and additions to your account not yet on your bank's books, think hard.
Remember that some banks credit interest earned on a checking
account only quarterly, whereas you may already have that interest
recorded in your books. Moreover, if you wrote a check after the bank's
closing date, the amount will appear in your checkbook register but not in
your statement. Make sure that you tell ADAM everything you know about
your account. It's only by having full information that ADAM can balance
your monthly statement.

4) Finally, use dollars and cents but leave out the dollar sign. ADAM
has been programmed to understand that, for example, 48.53 really
means $48.53.

ADDRESS BOOK
Purpose: How many times have you discarded an old address book

because the pages finally filled up with out-of-date addresses? How
many times have you misplaced your address book? This program is
designed to improve your record keeping. It provides a single place in
which to store all of the addresses that often remain on scraps of paper
that are soon lost. It replaces address books that are crowded with old
addresses.

This program can be easily modified to keep track of many different
kinds of information simply by changing some of the labels. You might
want to use it to keep track of your book or record collection, or to store
financial information that can be quickly and easily recalled.

How to Run It: First decide what information you're looking for. You
don't necessarily have to remember the name, just one of several
different parts of the address-the zip code, the city, the state, the first
name or the last name.

Second, after you type RUN, keep pressing the return key until
ADAM asks for the information you are prepared to give. If the name of a

RArn ::inrl qmith . 1 A~

city is typed after ADAM asks THE CITY IS, ADAM will print the first
address found with that city. To find the next address that includes that
city, type S. If you want to give ADAM another piece of information with
which to begin another search, type Y.

You can put your own list of addresses into ADAM's memory by
adding DATA statements after the end of the program (line 390) and
before the DATA statement (line 999) that contains the word END several
times. This final line tells ADAM to quit looking for more addresses. You
don't have to put the addresses in any particular order, alphabetical or
otherwise. If you request subsequent searches for addresses using the
same piece of information, ADAM will print them beginning with the
smallest line number. You do need to structure the information within an
address in the following order: last name, first name, street and number,
city, state, zip code. If you don't have part of the address, you still need to
include something as a place holder, such as a question mark. Re
member to use capital letters and not to use spaces after the commas
separating the information in the address.

STATE CAPITAL TUTOR
Purpose: This is an educational program based on the flash card

principle. It is designed to teach the user to remember the names of the
capital cities of the United States. By changing the DATA lines, it can help
someone memorize nearly any list of information-world capitals, famous
persons, famous dates, athletic records, and so forth.

How to Run It: You begin by providing ADAM with some infor
mation- a success ratio, a secret number and the number of questions
desired. The success ratio is a goal you set for yourself. It is a percentage
and can vary from O to 100. The secret number is used by ADAM to
generate a sequence of random numbers used to select the data for the
questions. Without this, ADAM would ask the questions in the same order
every time. In fact, giving ADAM the same secret number will cause the
same order of questions. The last number that you need to give ADAM is
the number of questions that you wish to be asked before ADAM tallies
your score and compares it to your goal. Be careful to use capital letters
and to check your spelling. Computers are very picky instructors.

MATHEMATICS TUTOR
Purpose: This is also an educational program, though you probably

won't be able to modify it as easily as the STATE CAPITAL TUTOR. This
program can provide very simple mathematical drills or very difficult
ones. This is achieved by varying the number of digits in the questions.
You might find this program extremely challenging.

How to Run It: As in the last program, you begin by providing ADAM
with your goal and with a number that ADAM will use to generate a stream
of randomly chosen numbers. You then must select the type of questions
that you want to answer. You can choose addition, multiplication,
subtraction or division. If you choose division, ADAM will be so impressed
by your bravery that you will be asked for the whole number part only of
the answer. You won't have to keep up with some of the messy fractions
to which division so frequently leads. You can also decide not to continue
at this point by typing in a zero. Next, you need to tell ADAM how many
questions to ask and what their degree of difficulty should be. Difficulty is
measured by the maximum number of digits that ADAM will use in the
questions. Remember that addition and subtraction are simpler than
multiplication when it comes to large numbers. Some of these questions
get really tough. When you've answered all of the questions, ADAM will
tell you your score and let you know if you achieved your goal. Good luck!

BerQ and Smith • 14 7

PROGRAM LISTINGS

Loan Amortization - Listing
10 REM PROGRAM TO COMPUTE
15 REM MONTHLY PAYMENTS
20 REM ON A CAR LOAN OR
25 REM HOME MORTGAGE.
27 HOME
30 ? 1 '***''
40 ? "* LOAN AMORTIZATION PROGRAM *"
50 ? ''***''

100 ?: ?
110 ? "WHAT IS THE PRICE OF THE CAR"
120 ? "OR HOUSE YOU WISH TO BUY?"
125 INPUT" $"; a
130?
140 ? " HOW LARGE A DOWN PAYMENT WOULD"
150 INPUT "YOU LIKE TO MAKE$"; b
160?
170 ? "OVER HOW MANY YEARS WOULD YOU"
180 INPUT "LIKE TO REPAY YOUR LOAN?"; c
190?
200?
210 LETd=c*12
220 ? "WHAT ANNUAL INTEREST RATE DO"
230 INPUT "YOU EXPECT TO PAY(%) ? "; e
240 REM COMPUTATION OF MONTHLY INTEREST RATE
250 LET f=e*.01/12
260 REM COMPUTATION OF MONTHLY PAYMENT
270?
275 LET h=1
280 FOR g=1 TO d
290 LET h=h*(1 +f)
300 NEXT g
310 LET i=(a-b)*f/(1 - (1 /h))
320 LET j=INT(100*i+.5)/100
325 ?: ?
330 ? "LOAN REPAYMENT ANALYSIS:"

- • • • ._. - n . ·-"-m

J

.I

rgdir
Rectangle

335 ?:?
340 ? "AMOUNT BORROWED IS$"; a-b
345?
350 ? "NUMBER OF MONTHLY PAYMENTS IS:"
355 ? " "; d
360?
365 ? "MONTHLY PAYMENT YOU MUST MAKE"
366 ? " IS$"; j
370?
380 ? "WOULD YOU LIKE TO MODIFY THE"
390 INPUT "TERMS OF YOUR LOAN?"; k$
400 ?:?
410 IF k$="YES" THEN 100
420 IF k$="yes" THEN 100
425 ? "PROGRAM END"
430 END

Loan Amortization - Sample Output

* LOAN AMORTIZATION PROGRAM *

WHAT IS THE PRICE OF THE CAR
OR HOUSE YOU WISH TO BUY?

$100000

HOW LARGE A DOWN PAYMENT WOULD
YOU LIKE TO MAKE $10000

OVER HOW MANY YEARS WOULD YOU
LIKE TO REPAY YOUR LOAN? 30

WHAT ANNUAL INTEREST RATE DO
YOU EXPECT TO PAY(%)? 14

LOAN REPAYMENT ANALYSIS:

AMOUNT BORROWED IS $90000

Berg and Smith • 149

NUMBER OF MONTHLY PAYMENTS IS:
360

MONTHLY PAYMENT YOU MUST MAKE
IS $1066.38

WOULD YOU LIKE TO MODIFY THE
TERMS OF YOUR LOAN?no

PROGRAM END

]

]

]

]

Compound Interest - Program Listing
10 REM COMPOUND INTEREST
20 REM PROGRAM
22 HOME
25 ? 1 '***''
26 ? "* COMPOUND INTEREST *"
27 ? '1***''
28 ?: ?
30 ? "TO WATCH YOUR MONEY GROW OVER"
40 ? "TIME, START BY TYPING IN THE"
50 INPUT " INITIAL AMOUNT INVESTED$" ; a
55 ?: ?
60 ? " NOW TYPE IN THE SIMPLE RATE OF"
70 ? " INTEREST AT WHICH YOUR MONEY"
80 INPUT "WILL GROW(%) "; isimple
85 ?: ?
90 ? " HOW MANY YEARS WILL YOU LEAVE"

100 INPUT " YOUR MONEY ON DEPOSIT?"; c
105 ?:?
110 ? "NOW TYPE THE NUMBER OF TIMES"

120 ? " EACH YEAR THAT INTEREST WILL"
130 INPUT "COMPOUND:"; number
135 ?:?
140 ? "HOW MANY YEARS WOULD YOU LIKE"
150 INPUT " INFORMATION ON?" ; n
160 iperiod= 1+((isimple/number)/100)
170 icompound = iperiod" number
175 effective = (icompound - 1)*100
180 ?: ?
190 ? "THE EFFECTIVE ANNUAL RATE OF"
195 ? " INTEREST IS "; effective;" PERCENT.": ?: ?
198 ? "YR BEGIN INTEREST ENDING"
199 ? " BALANCE EARNED BALANCE"
200 FOR k= 1 TO n
240 ? k ; TAB(6) ; " $"; INT(a+.5); TAB(15}; "$";
INT((a*icompound)-a+ .5) ; TAB(24) ; "$";

INT(a*icompound + .5)
250 LET a= a*icompound
270 NEXT k
280 END

Compound Interest - Sample Output

* COMPOUND INTEREST *

TO WATCH YOUR MONEY GROW OVER
TIME, START BY TYPING IN THE
INITIAL AMOUNT INVESTED $10000

NOW TYPE IN THE SIMPLE RATE OF
INTEREST AT WHICH YOUR MONEY
WILL GROW(%) 12

HOW MANY YEARS WILL YOU LEAVE
YOUR MONEY ON DEPOSIT?5

Berg and Smith • 15 1

NOW TYPE THE NUMBER OF TIMES
EACH YEAR THAT INTEREST WILL
COMPOUND:12

HOW MANY YEARS WOULD YOU LIKE
INFORMATION ON?5

THE EFFECTIVE ANNUAL RATE OF
INTEREST IS 12.6825027 PERCENT.

YR BEGIN INTEREST
BALANCE EARNED

1 $10000 $1268
2 $11268 $1429
3 $12697 $1610
4 $14308 $1815
5 $16122 $2045

]

]

]

]

ENDING
BALANCE
$11268
$12697
$14308
$16122
$18167

College Tuition - Program Listing
1 HOME
5 ? "***"

6 ? "* COLLEGE TUITION *"
7 ? "***"

8 ?: ?
10 ? " HOW MUCH MONEY WOULD YOU LIKE"
15 REM MONTHLY PAYMENTS ON
20 ? 'TO HAVE STORED AWAY IN THE"
25 ? " FUTURE FOR YOUR CHILD'S HIGHER"
30 INPUT " EDUCATION?$"; a
40 ?:?
50 ? " HOW MANY YEARS REMAIN UNTIL"

152 • ADAM: The System

60 ? "YOU MUST PAY YOUR FIRST"
70 INPUT "TUITION BILL?"; b
80 ?: ?
90 ? "AT WHAT ANNUAL INTEREST RATE"

100 ? "WILL YOUR MONEY EARN"
110 INPUT "INTEREST(%)"; c
120 LET d=c*.01
130 LETf=1
140 FOR e=1 TO b
150 LET f=f*(1 +d)
160 NEXT e
170 LET g=a*d/(f-1)
180 ?:?
190 ? "TO MEET THOSE COLLEGE BILLS,"
200 ? "START SAVING NOW AT AN ANNUAL"
210 ? "RATE OF$"; INT(g);" A YEAR."

:allege Tuition - Sample Output

* COLLEGE TUITION *

HOW MUCH MONEY WOULD YOU LIKE
TO HAVE STORED AWAY IN THE
FUTURE FOR YOUR CHILD'S HIGHER
EDUCATION? $20000

HOW MANY YEARS REMAIN UNTIL
YOU MUST PAY YOUR FIRST
TUITION BILL?10

AT WHAT ANNUAL INTEREST RATE
WILL YOUR MONEY EARN
INTEREST (%)12

TO MEET THOSE COLLEGE BILLS,
START SAVING NOW AT AN ANNUAL
RATE OF $1139 A YEAR.

J
J
J
J
]

]

]

]

]

]

Foreign Currency Converter- Program Listing
1 HOME

10 REM PROGRAM TO CONVERT
20 REM FOREIGN CURRENCIES TO
30 REM UNITED STATES DOLLAR AMOUNTS
40 REM AND TO COMPUTE DOLLAR
50 REM PRICES ON FOREIGN
55 REM GOODS
56 ? ''**''
57 ? "* FOREIGN CURRENCY CONVERTER *"
58 ? ''**''
59?
60 ?: ?
80 ? ">>>USE CAPITAL LETTERS<<<" :?
85 ? "ENTER THE NAME OF THE COUNTRY"
90 ? "WHOSE CURRENCY YOU WANT"

100 INPUT " INFORMATION ON: " ; a$
120 RESTORE
130 FOR b=1 TO 43
140 READ c$, d$, e

154 • ADAM: The System

150 IF a$=c$ GOTO 260
160 NEXT b
165 ?: ?
170 ? "UNFORTUNATELY, ADAM'S DATABASE"
180 ? "HASN'T INFORMATION YET ON THE"
190 ? "CURRENCY OF"; a$;"."
200 ? "WOULD YOU LIKE TO TRY ANOTHER"
210 INPUT "COUNTRY?"; f$
220 RESTORE
230 IF f$= "YES" THEN 60
240 IF f$= "yes" THEN 60
250 STOP
260 ?:?
270 ? "THE CURRENCY IN "; c$
280? "ISTHE";d$;"."
290 ?:?
300 ? "THE EXCHANGE RATE IS"; SPC(1); e
310 ? d$; " (S) PER U.S. DOLLAR."
320 ?: ?
330 ? " DO YOU HAVE A"; SPC(1); d$
340 ? "DENOMINATED PRICE YOU WOULD"
350 INPUT "LIKE CONVER.TED TO U.S. DOLLARS?"; g$
360 IF g$="YES" THEN 380
370 IF g$="yes" THEN 380
372 ?:?
373 ? "WOULD YOU LIKE TO START AGAIN?"
374 INPUT h$
375 ?:?
376 IF h$="YES" THEN 60
378 IF h$="yes" THEN 60
379 STOP
380 ?:?
390 ? "INPUT THE PRICE IN "; d$; " (S):"
400 INPUT i
410 ?:?
420 ? "THE U.S. DOLLAR EQUIVALENT"
430 ? "PRICE IS$"; i/e; " ."
440 RESTORE
445 GOTO 372

Q,....r_ --...J r"-- !..1..L

450 DATA
460 DATA
470 DATA
480 DATA
490 DATA
500 DATA
510 DATA
520 DATA
530 DATA
540 DATA
550 DATA
560 DATA
565 DATA
570 DATA
580 DATA
590 DATA
600 DATA
610 DATA
620 DATA
630 DATA
640 DATA
650 DATA
660 DATA
670 DATA
680 DATA
690 DATA
700 DATA
710 DATA
720 DATA
730 DATA
740 DATA
750 DATA
760 DATA
770 DATA
780 DATA
790 DATA
800 DATA
810 DATA
820 DATA

156 • ADAM: The System

ARGENTINA, PESO, 25.502
AUSTRALIA, DOLLAR, 1.0826
AUSTRIA, SCHILLING, 19.45
BELGIUM, FRANC, 56.885
BRAZIL, CRUZEIRO, 1028.50
BRITAIN, POUND, .7028
CANADA, DOLLAR, 1.2458
CHINA, YUAN, 2.0686
COLOMBIA, PESO, 90.19
DENMARK, KRONE, 10.01
ECUADOR, SUCRE, 55.81
FINLAND, MARKKA, 5.86
FRANCE, FRANC, 8.85
GREECE, DRACHMA, 102.30
HONG KONG, DOLLAR, 7. 7965
INDIA, RUPEE, 10.7411
INDONESIA, RUPIAH, 996
IRELAND, PUNT, .8928
ISRAEL, SHEKEL, 124.17
ITALY, LIRA, 1696
JAPAN, YEN, 233.60
LEBANON, POUND, 5.86
MALAYSIA, RINGGIT, 2.3360
MEXICO, PESO, 166
NETHERLANDS, GUILDER, 3.1 135
NEW ZEALAND, DOLLAR, 1.5302
NORWAY, KRONE, 7.8275
PAKISTAN, RUPEE, 13.50
PERU, SOL, 2346.15
PHILIPPINES, PESO, 1400
PORTUGAL, ESCUDO, 136.0
SAUDI ARABIA, RIYAL, 3.51
SINGAPORE, DOLLAR, 2.1260
SOUTH AFRICA, RAND, 1.2594
SOUTH KOREA, WON, 799.60
SPAIN, PESETA, 156.45
SWEDEN, KRONA, 8. 1160
SWITZERLAND, FRANC, 2.2170
TAIWAN, DOLLAR, 40.19

830 DATA
840 DATA
850 DATA
860 DATA
870 END

THAILAND, BAHT, 22.79
URUGUAY, NEW PESO, 46.63
VENEZUELA, BOLIVAR, 5.15
WEST GERMANY, MARK, 2.7610

Foreign Currency Converter - Sample Output

* FOREIGN CURRENCY CONVERTER *

>>>USE CAPITAL LETTERS<<<

ENTER THE NAME OF THE COUNTRY
WHOSE CURRENCY YOU WANT
INFORMATION ON: FRANCE

THE CURRENCY IN FRANCE
IS THE FRANC.

THE EXCHANGE RATE IS 8.85
FRANC(S) PER U.S. DOLLAR

DO YOU HAVE A FRANC
DENOMINATED PRICE YOU WOULD
LIKE CONVERTED TO U.S. DOLLARS?
yes

INPUT THE PRICE IN FRANC(S):
?1000

THE U.S. DOLLAR EQUIVALENT
PRICE IS $112.99435.

WOULD YOU LIKE TO START AGAIN?
?no

?Break In 379

Checkbook Balancing - Program Listing
1 HOME

10 REM CHECKBOOK BALANCING
20 REM PROGRAM
30 ? ''***1

'

40 ? "* CHECKBOOK BALANCING PROGRAM *"
45 ? ''***''

46 ?: ?
50 ? "PLEASE INPUT THE DATE OF YOUR"
55 ? "BANK STATEMENT. ": ?
60 ? "ENTER THE DATE WITHOUT ANY"
70 ? "COMMAS, E.G., JANUARY 4 1984,"
75 INPUT "THE DATE? "; a$
80 ?: ?
90 ? "NOW TYPE IN THE NUMBER OF"

100 ? "DEPOSITS THAT HAVEN'T BEEN"
110 ? "CREDITED TO YOUR ACCOUNT."
112 ?
115 INPUT"# OF UNCREDITED DEPOSITS?"; b
120 IF b=0 THEN 225
125 ?: ?
176 ?: ?
177 ? "INPUT THE AMOUNTS OF THOSE"
178 ? "DEPOSITS NOW:":?
180 DIM d(b)
190 FOR c=1 TO b
200 INPUT" $"; d(c)
210 LET e=e+d(c)
220 NEXTc
225 ?: ?
230 ? "HOW MANY CHECKS ARE THERE"
240 INPUT "OUTSTANDING?"; f
250 IF f=0 THEN 385
255 ?: ?
260 ? "NOW TYPE IN THE NUMBER OF EACH"
270 ? "OUTSTANDING CHECK, FOLLOWED BY"
280 ? "THE AMOUNT.";
285 ?: ?

158 • ADAM: The System

315 ? "ENTER THE DATA NOW:": ?
320 j=0
330 DIM g(f)
340 DIM h(f)
350 FOR i=1 TO f
360 INPUT " CHECK#" ; g(i)
361 INPUT " AMOUNT$" ; h(i)
362 ?: ?
370 j=j+ h(i)
380 NEXT i
385 ?: ?
390 ? " NOW THINK OF ANY OTHER"
400 ? " CHARGES OR ADDITIONS TO YOUR"
410 ? "ACCOUNT THAT ARE RECORDED IN"
415 ?: ?
420 ? "YOUR CHECKBOOK BUT THAT HAVE"
430 ? "NOT APPEARED IN YOUR BANK"
440 ? "STATEMENT- E.G.,CHECK"
450 ? "PRINTING FEES."
460 ?: ?
480 ? " HOW MANY ADDITIONS OR CHARGES"
490 INPUT " ARE THERE? "; k
500 IF k=0 THEN 610
510 DIM l(k)
515 ?: ?
516 ? "PLEASE TYPE IT (THEM) IN NOW:"
565 ?: ?
570 q=0
580 FOR m= 1 TO k
590 INPUT" $"; l(m)
600 q=q+l(m)
605 NEXT m
610 ?: ?
620 ? "ENTER YOUR STATEMENT BALANCE"
630 INPUT " $"; n
635?
660 REM OUTPUT OF RESULTS
770 ?: ?
776 ? " CHECKBOOK BALANCING WORKSHEET"

Aorr, e:inrl C!mi♦h _ -1 en

777 ? "------------------------------"
778?
780 ? TAB(16-(LEN(a$)/2)); a$
790 ?: ?
800 ? "CHECKS OUTSTANDING:": ?
813 ? TAB(12); "#"; TAB(25); "AMOUNT"
815?
820 FOR o=1 TO f
830 ? TAB(12); g(o); TAB(25) ; "$" ; h(o)
840 NEXTo
850?
860 ? "TOTAL"; TAB(25) ; "$; j
870 ?: ?
880 ? "DEPOSITS NOT YET RECORDED BY"
890 ? "THE BANK:"
900?
910 FOR p=1 TO b
920 ? TAB(25) ; " $" d(p)
930 NEXT p
940 ?: ?
950 ? "TOTAL"; TAB(25) ; "$" ; e
960?
965 GETt$
970 ? "TOTAL OF UNRECORDED MISC."
980 ? " CHARGES AND ADDITIONS:"
990?

1000 ? TAB(25) ; "$"; q
1005 ? "BALANCE EXPECTED IN CHECKBOOK:"
1025?
1030 ? " $"; n- j+e+q
1040 END

160 • ADAM: The System

Checkbook Balancing - Sample Output
**

* CHECKBOOK BALANCING PROGRAM *
••

PLEASE INPUT THE DATE OF YOUR
BANK STATEMENT.

ENTER THE DATE WITHOUT ANY
COMMAS, E.G., JANUARY 4 1984,
THE DATE? FEBRUARY 7, 1984

NOW TYPE IN THE NUMBER OF
DEPOSITS THAT HAVEN'T BEEN
CREDITED TO YOUR ACCOUNT.

OF UNCREDITED DEPOSITS? 2

INPUT THE AMOUNTS OF THOSE
DEPOSITS NOW:

$500
$400

HOW MANY CHECKS ARE THERE
OUTSTANDING? 2

NOW TYPE IN THE NUMBER OF EACH
OUTSTANDING CHECK, FOLLOWED BY
THE AMOUNT.

ENTER THE DATA NOW:

CHECK #101
AMOUNT $86

CHECK #102
AMOUNT $117

NOW THINK OF ANY OTHER
CHARGES OR ADDITIONS TO YOUR
ACCOUNT THAT ARE RECORDED IN

YOUR CHECKBOOK BUT THAT HAVE
NOT APPEARED IN YOUR BANK
STATEMENT- E.G., CHECK
PRINTING FEES.

r"_ _ _ _ I - • 4 •

HOW MANY ADDITIONS OR CHARGES
ARE THERE? 1

PLEASE TYPE IT (THEM) IN NOW:
$25

ENTER YOUR STATEMENT BALANCE
$1100

FEBRUARY 7 1984

CHECKS OUTSTANDING:
AMOUNT
101 $ 86
102 $117

TOTAL $203

DEPOSITS NOT YET RECORDED BY
THE BANK:

TOTAL

$500
$400

$900

TOTAL OF UNRECORDED MISC.
CHARGES AND ADDITIONS:

$25
BALANCE EXPECTED IN CHECKBOOK:

$1822

Address Book - Program Listing
10 HOME
20 ? 1 '***''
30 ? "* ADDRESS BOOK *"
40 ? ''***'': ?: ?
50 I ast$ = "": ti rst$ = "": city$=""
60 state$='"': zip$="''
65 ? : ? ">>> USE CAPITAL LETTERS<<<"

162 • ADAM: The System

70 ?: INPUT "THE LAST NAME IS "; last$
80 IF last$<>" " GOTO 200
90 ?: INPUT "THE FIRST NAME IS "; first$

100 IF first$<>" " GOTO 200
110 ?: INPUT "THE CITY IS "; city$
120 IF city$<>""GOTO 200
130 ?: INPUT "THE STATE IS " ; state$
140 IF state$<>"" GOTO 200
150 ?: INPUT "THE ZIP CODE IS"; zip$
155 IF zip$<>"" GOTO 200
160 ?: ?: ? "TYPE 'Y' TO TRY AGAIN.": ?: ?
170 GET choice$: IF choice$<>"Y" THEN?

"BYE FOR NOW.": END
180 GOTO 50
200 READ a$, b$, c$, d$, e$, f$
210 IF a$= 1ast$ GOTO 300
220 IF b$=first$ GOTO 300
230 IF d$= city$ GOTO 300
240 IF e$=state$ GOTO 300
250 IF f$=zip$ GOTO 300
260 IF a$<>"END" GOTO 200
270 ?: ?: ? " I CAN'T FIND THAT ADDRESS." : ?: ?
280 ? TYPE 'Y' TO START AGAIN.": GET choice$
290 IF choice$= "Y" THEN RUN
295 GOTO 380
300 ?: ? "- - -THE ADDRESS IS---"
310 ?: ? " "; b$;" "; a$
320 ? " "; c$
330 ? " "· d$· " " · e$· " " · f$ · ? · ? . , , , , ,
340 ? "TYPE 'S' TO SEARCH AGAIN, OR": ?

"TYPE 'Y' TO START AGAIN."
350 GET choice$
360 IF choice$= "Y" THEN RUN
370 IF choice$= "S" GOTO 200
380 ?: ?: ? " GOODBYE. I LOOK FORWARD TO" : ?

"OUR NEXT MEETING."
390 END
600 DATA SMITH,ALAN,620

HEMLOCK,BARSTOW,TX, 79797

n--- - - - • " .,,

601 DATA SMITH,JUDY, 12 KODALY PLACE,PALO
ALTO,CA,94949

602 DATA MEEK,BEN,606 SHYLOCK
ST.,LONDON,ENGLAND, !!!!!

603 DATA HORN,STEVE, 15 LEHMAN LANE,NEW
YORK,NY, 10011

604 DATA HAMMER,M. & K., 76 TRIPLET
CIRCLE,NOME,ALASKA,00001

605 DATA GROSS.BRIAN, 1600 PENNSYLVANIA
AVE., WASHINGTON,DC,23232

999 DATA END,END,END,END,END,END

Address Book- Sample Output

* ADDRESS BOOK *

>>> USE CAPITAL LETTERS<<<

THE LAST NAME IS

THE FIRST NAME IS

THE CITY IS BARSTOW

---THE ADDRESS IS- - -

ALAN SMITH
620 HEMLOCK
BARSTOW TX 79797

TYPE 'S' TO SEARCH AGAIN, OR
TYPE 'Y' TO START AGAIN.

* ADDRESS BOOK *

> > > USE CAPITAL LETTERS < < <

164 • ADAM: The System

THE LAST NAME IS HAMMER

---THE ADDRESS IS---

M. & K. HAMMER
76 TRIPLET CIRCLE
NOME ALASKA 00001

TYPE 'S' TO SEARCH AGAIN, OR
TYPE 'Y' TO START AGAIN.

State Capital - Program Listing
10 DIM state$(50): DIM capita1$(50)
20 FOR i=1 TO 50
30 READ state$(i), capita1$(i)
35 NEXT i
40 HOME
50 ? ''***''
60 ? "* STATE CAPITAL TUTOR *"
70 ? "***": ? : ?
80 right=0
90 ? "WHAT SUCCESS RATIO (PERCENT)": INPUT "DO

YOU HOPE TO ACHIEVE?"; goal: ?
100 ? "TELL ME A SECRET NUMBER FOR MY": INPUT

"RANDOM NUMBER GENERATOR. "; secret: ?
110 IF secret>1000 THEN ? "THAT'S TOO BIG FOR ME

TO KEEP":? "SECRET.":?: GOTO 100
120 FOR m=1 TO INT(secret)
130 a= RND(m)
140 NEXT m
150 ? "HOW MANY QUESTIONS DO YOU": INPUT "WANT

ME TO ASK?"; number:?
155 ? ">>> USE UPPER CASE<<<":?
160 FOR j= 1 TO number
170 x=INT(.5+(49*RND(secret)))+1
180 secret=secret+number

190 ? "FOR THE STATE OF "; state$(x) ; ","
200 INPUT "THE CAPITAL IS "; answer$: ?
210 IF answer$= capitaI$(x) GOTO 240
220 ? "THAT'S NOT QUITE RIGHT. THE": ? "CAPITAL

OF"; state$(x) : ? " IS "; capitaI$(x); ".": ?: ?
230 GOTO 260
240 ? "THAT'S RIGHT!" : ?: ?
250 right=right+ 1
260 NEXT j
270 percent=INT(100*(right/number)+ .5)
280 IF percent< goal GOTO 320
290 ? " ******************************": ?: ?

"CONGRATULATIONS! YOU HAVE" ;? " EXCEEDED
YOUR GOAL OF "; goal

300 ? " PERCENT WITH A SCORE OF " ; percent; ". " :?:?
' '******************************'': ?

310 GOTO 340
320 ? " @@@@@@@@@@@@@@@@@@@@@@

@@@@@@@@": ?: ? "BETTER LUCK NEXT
TIME. YOU": ? "CORRECTLY ANSWERED ONLY " ;
right

325 ? "OF "; number; " QUESTIONS ASKED.": ?
330 ? "THAT GIVES YOU A SCORE OF " ; percent ; " ," :?:?

''@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@" :?

340 ? "TYPE THE LETTER 'Y' TO TRY" :? "AGAIN."
350 GET choice$: IF choice$= "Y" GOTO 40
360 ?: ?: ? "HURRY BACK. I'll BE WAITING."
370 END
401 DATA
402 DATA
403 DATA
404 DATA
405 DATA
406 DATA
407 DATA
408 DATA
409 DATA
410 DATA

ALABAMA,MONTGOMERY
ALASKA,JUNEAU
ARIZONA.PHOENIX
ARKANSAS.LITTLE ROCK
CALIFORNIA,SACRAMENTO
COLORADO,DENVER
CONNECTICUT,HARTFORD
DELAWARE,DOVER
FLORIDA,TALLAHASSEE
GEORGIA,ATLANTA

.. -,..,_ - ""'· __ ... __

411 DATA
412 DATA
413 DATA
414 DATA
415 DATA
416 DATA
417 DATA
418 DATA
419 DATA
420 DATA
421 DATA
422 DATA
423 DATA
424 DATA
425 DATA
426 DATA
427 DATA
428 DATA
429 DATA
430 DATA
431 DATA
432 DATA
433 DATA
434 DATA
435 DATA
436 DATA
437 DATA
438 DATA
439 DATA
440 DATA
441 DATA
442 DATA
443 DATA
444 DATA
445 DATA
446 DATA
447 DATA
448 DATA
449 DATA
450 DATA

HAWAII.HONOLULU
IDAHO,BOISE
ILLINOIS,SPRINGFIELD
INDIANA,INDIANAPOLIS
IOWA,DES MOINES
KANSAS.TOPEKA
KENTUCKY, FRANKFORT
LOUISIANA.BATON ROUGE
MAINE,AUGUSTA
MARYLAND.ANNAPOLIS
MASSACHUSETTS.BOSTON
MICHIGAN.LANSING
MINNESOTA.ST. PAUL
MISSISSIPPI.JACKSON
MISSOURI.JEFFERSON CITY
MONTANA,HELENA
NEBRASKA,LINCOLN
NEVADA.CARSON CITY
NEW HAMPSHIRE.CONCORD
NEW JERSEY,TRENTON
MEW MEXICO.SANTA FE
NEW YORK.ALBANY
NORTH CAROLINA.RALEIGH
NORTH DAKOTA.BISMARCK
OHIO,COLUMBUS
OKLAHOMA.OKLAHOMA CITY
OREGON.SALEM
PENNSYLVANIA.HARRISBURG
RHODE ISLAND.PROVIDENCE
SOUTH CAROLINA.COLUMBIA
SOUTH DAKOTA.PIERRE
TENNESSEE.NASHVILLE
TEXAS.AUSTIN
UTAH.SALT LAKE CITY
VERMONT,MONTPELIER
VIRGINIA,RICHMOND
WASHINGTON,OL YMPIA
WEST VIRGINIA,CHARLESTON
WISCONSIN.MADISON
WYOMING,CHEYENNE

Berg and Smith • 167

State Capital Tutor - Sample Output

* STATE CAPITAL TUTOR *

WHAT SUCCESS RATIO (PERCENT)
DO YOU HOPE TO ACHIEVE? 33

TELL ME A SECRET NUMBER FOR MY
RANDOM NUMBER GENERATOR. 345

HOW MANY QUESTIONS DO YOU
WANT ME TO ASK? 3

>>> USE UPPER CASE<<<

FOR THE STATE OF FLORIDA,
THE CAPITAL IS TALLAHASSEE

THA'S RIGHT!

FOR THE STATE OF NORTH DAKOTA,
THE CAPITAL IS BISMARCK

THAT'S RIGHT!

FOR THE STATE OF ARIZONA,
THE CAPITAL IS TIMBUKTU

THAT'S NOT QUITE RIGHT. THE
CAPITAL OF ARIZONA
IS PHOENIX.

CONTRATULATIONS! YOU HAVE
EXCEEDED YOUR GOAL OF 33
PERCENT WITH A SCORE OF 67 .
•••
TYPE THE LETTER 'Y' TO TRY
AGAIN.

168 • ADAM: The System

Mathematics Tutor - Program Listing
5 HOME

10 REM MATHEMATICS TUTOR
15 REM -----------------------------
20 REM This program will test
30 REM your mathematical
40 REM skills and record
50 REM your success ratio
51 REM --------------- --------------
52 REM -----------------------------
60 ? ' '***•• ··
70 ? "* MATHEMATICS TUTOR *" : ?

' '***''
80 right=0
90 ?: ? "WHAT SUCCESS RATIO DO YOU HOPE" : INPUT

"TO ACHIEVE? "; goal
100?
110 ? "TELL ME A SECRET NUMBER FOR MY": INPUT

"RANDOM NUMBER GENERATOR. " ; secret: ?
120 IF secret> 1000 THEN ? "THAT'S TOO BIG FOR ME TO

KEEP" :? "SECRET." : ?: GOTO 100
210?
220? II

230 ? "
240? II

250? II

260?
270?

(1) ADDITION"
(2) SUBTRACTION"
(3) DIVISION"
(4) MUL Tl PLICATION"

280 ? " PICK THE CORRESPONDING NUMBER"
290 ? "TO CHOOSE THE TYPE OF PROBLEM"
300 INPUT "OR INPUT OTO END. " ; type: ?
305 IF type=0 THEN ? "SEE YOU LATER,

ALLIGATOR.": END
310 INPUT "HOW MANY PROBLEMS? "; number: ?
320 ? " WHAT IS THE MAXIMUM NUMBER OF"
330 INPUT "DIGITS IN EACH NUMBER? "; digits: ?
331 IF digits< 6 GOTO 334
332 ? "YOU'RE OUT OF MY LEAGUE. TRY"

c,.... .. ,... ---1 C'-:~L... .. """

333 ? "A SMALLER NUMBER." :?: GOTO 320
334 IF digits=1 THEN factor=10
335 IF digits=2 THEN factor=100
336 IF digits=3 THEN factor=1000
337 IF digits=4 THEN factor= 10000
338 IF digits=5 THEN factor=100000
339 IF digits=6 THEN factor= 1000000
340 FOR m= 1 TO INT(secret)
341 a= RND(m)
342 NEXTm
350 IF type= 1 GOTO 400
360 IF type=2 GOTO 600
370 IF type=3 GOTO 800
380 IF type=4 GOTO 1000
390 ?: ? "I DON'T UNDERSTAND WHAT TYPE": ? "OF

PROBLEM YOU WANTED. PLEASE": ? "TRY
AGAIN.": GOTO 210

400 REM THIS IS THE ADDITION
410 REM SECTION
420 FOR i=1 TO number
430 a=RND(secret*number)
440 b= INT(a*factor)
450 c= INT((a*factor- b)*factor)
460 d=b+c
470 ? "WHAT IS " ; b; " PLUS " ; c
480 INPUT "YOUR ANSWER IS: "; answer: ?
490 IF answer= d GOTO 530
500 ? "THAT ISN'T QUITE RIGHT."
510 ? "THE ANSWER IS ACTUALLY "; d: ?
520 GOTO 550
530 right= right+ 1
540 ? ''THAT'S RIGHT!!": ?
550 NEXT i
560 GOTO 1160
600 REM THIS IS THE SUBTRACTION
610 REM SECTION
620 FOR i = 1 TO number
630 a= RND(secret*number)
640 b= INT(a*factor)

170 • ADAM: The System

650 c=INT((a*factor-b)*factor}
660 d=b-c
670 ? "WHAT IS"; b;" MINUS"; c
680 INPUT "YOUR ANSWER IS:"; answer: ?
690 IF answer=d GOTO 730
700 ? "THAT ISN'T QUITE RIGHT."
710 ? "THE ANSWER IS ACTUALLY "; d : ?
720 GOTO 750
730 right=right+ 1
740 ? "THAT'S RIGHT!!": ?
750 NEXT i
760 GOTO 1160
800 REM THIS IS THE DIVISION
810 REM SECTION
820 FOR i = 1 TO number
830 a= RND(secret*number}
840 b= INT(a*factor}
850 c=INT((a*factor-b)*factor)
860 d=INT(b/c+.5}
865 ?: ? "GIVE YOUR ANSWER TO THE":? "NEAREST

WHOLE NUMBER. " : ?
870 ? "WHAT IS " ; b ; " DIVIDED BY " ; c
880 INPUT "YOUR ANSWER IS:"; answer: ?
890 IF answer=d GOTO 930
900 ? "THAT ISN'T QUITE RIGHT."
910 ? "THE ANSWER IS ACTUALLY"; d:?
920 GOTO 950
930 right=right+1
940 ? "THAT'S RIGHT!!": ?
950 NEXT i
960 GOTO 1160

1000 REM THIS IS THE MULTIPLICATION
1010 REM SECTION
1020 FOR i=1 TO number
1030 a= RND(secret*number)
1040 b=INT(a*factor)
1050 c= INT((a*factor-b)*factor)
1060 d=b*c
1070 ? "WHAT IS"; b;" MULTIPLIED BY"; c

RP.rn ::inrl ~mith . -1 7 -1

1080 INPUT "YOUR ANSWER IS:"; answer: ?
1090 IF answer=d GOTO 1130
1100 ? "THAT ISN'T QUITE RIGHT."
1110 ? "THE ANSWER IS ACTUALLY"; d:?
1120 GOTO 1150
1130 right=right+ 1
1140 ? "THAT'S RIGHT!!": ?
1150 NEXT i
1160 percent= INT(right/number*100+.5)
1170 ?
1180 IF percent< goal GOTO 1240
1190 ? "CONGRATULATIONS!!": ?
1200 ? "YOU ACHIEVED YOUR GOAL OF "; goal:?

"PERCENT." :?
1210 ? "YOU ANSWERED "; right;" OF "; number;"

QUESTIONS" : ? "ASKED. THAT'S A SUCCESS RATIO"
1220 ? "OF"; percent;" PERCENT."
1230 GOTO 1270
1240 ? "UNFORTUNATELY YOU DIDN'T": ? "ACHIEVE

YOUR GOAL. YOU ONLY"
1250 ? " ANSWERED "; right; " OF THE " ; number: ?

"QUESTIONS I ASKED, FOR A "; percent
1260 ? " PERCENT SUCCESS RATIO."
1270 ?: ? "TYPE THE LETTER 'y' TO TRY" : ? "AGAIN."
1280 GET choice$: IF choice$="y" GOTO 80
1290 ?: ? " GOODBYE. I HOPE TO PLAY WITH" : ? "YOU

AGAIN VERY SOON.": END

172 • ADAM: The System

Mathematics Tutor - Sample Output

* MATHEMATICS TUTOR *

WHAT SUCCESS RATIO DO YOU HOPE
TO ACHIEVE? 50

TELL ME A SECRET NUMBER FOR MY
RANDOM NUMBER GENERATOR. 555

(1) ADDITION
(2) SUBTRACTION
(3) DIVISION
(4) MULTIPLICATION

PICK THE CORRESPONDING NUMBER
TO CHOOSE THE TYPE OF PROBLEM
OR INPUT OTO END. 1

HOW MANY PROBLEMS? 4

WHAT IS THE MAXIMUM NUMBER OF
DIGITS IN EACH NUMBER? 2

WHAT IS 85 PLUS 30
YOUR ANSWER IS: 115

THAT'S RIGHT!!

WHAT IS 46 PLUS 30
YOUR ANSWER IS: 76

THAT'S RIGHT!!

WHAT IS 79 PLUS 97
YOUR ANSWER IS: 100

THAT ISN'T QUITE RIGHT.
THE ANSWER IS ACTUALLY 176

RArn ;:mrl ~mith . 1 7~

WHAT IS 3 PLUS 49
YOUR ANSWER IS: 52

THAT'S RIGHT!!

CONGRATULATIONS!!

YOU ACHIEVED YOUR GOAL OF 50
PERCENT.

YOU ANSWERED 3 OF 4 QUESTIONS
ASKED. THAT'S A SUCCESS RATIO
OF 75 PERCENT.

TYPE THE LETTER 'y' TO TRY
AGAIN.

GOODBYE. I HOPE TO PLAY WITH
YOU AGAIN VERY SOON.

]

]

- - • .. • _., - r"\. · -"-_

J

rgdir
Rectangle

CHAPTER 11
MAINTENANCE AND TROUBLE-SHOOTING

Care and Maintenance of ADAM
You will be glad to know that ADAM is an unusually hearty computer.

Unlike the computing machines of yesteryear, which used oversized
vacuum tubes that often burned out after extended use, ADAM is made
almost entirely of solid-state circuitry-resistors, transistors, diodes and
other tiny electronic parts that remain cool and effective for years. Strong
plastic has replaced metals subject to corrosion and the gigantic core
memories that computers used to use have given way to small, easy to
use, sturdy tape memory systems like ADAM's. For all of these reasons,
maintaining ADAM is easy. Your home computer should give you years of
service and enjoyment if you follow a few guidelines:

1. Keep your television screen or monitor free of dust and lint. To
clean the screen, use a commercial glass cleaner like Windex or
combine one quart of warm water with two or three tablespoons of
ammonia. Apply the mixture lightly to the screen, being careful to dry the
surface afterward.

2. To clean ADAM's keyboard and memory console, dust them
occasionally with a soft, dry cloth. For safety reasons it's important that
you keep all electrical wires dry and in good working condition, and that
you keep all jewelry, hair and other objects away from the inside of the
printer. It goes without saying that if you're going to smoke or drink near
your computer-habits we don't recommend-be sure to keep whatever
you're imbibing away from the machine's interior.

3. ADAM's tapes are extremely sensitive. Since information is stored
on the tapes through a magnetic process, it's important that you keep the
tapes away from any magnet-otherwise what you save may become
garbled. This means keeping the tapes away from the screen or printer;
both generate electromagnetic fields that can cause gobbledygook on
tapes. This also means that you shouldn't leave any tapes in the tape
drives when you're switching the machine on and off. The surge of
current accompanying the switching also creates a magnetic field that
can convert a prize-winning novel into nonsense. Always remove the
tapes before you switch the power on or off, and always store the digital
data packs in a safe, dry place, away from extreme heat or cold.

Berg and Smith • 175

Trouble-shooting
Sometimes, of course, even machines that have been well maintained
have their problems. In cases of malfunction in which you can't make the
repairs, you'll have to ship ADAM to either Coleco's West Hartford,
Connecticut headquarters or, most likely, to a computer repair center of
the Honeywell Corporation. Coleco has entered into a deal with Honey
well under which Honeywell will service ADAM machines under warranty.
To find out about the center nearest you, call Coleco's toll-free number,
(800) 842-1225, from 8 a.m. to 5 p.m. You can also call another number,
(203) 521-7222, during the same hours. This number, though not toll-free,
connects directly to Coleco's technicians, who may be able to help you
solve the problem yourself. They are usually very knowledgeable and
helpful. Another advantage is that this number is not usually as busy as
the toll-free number.

For the sake of convenience, you'll probably want to try to do some
repair work yourself, particularly if the problem is minor. Many problems
can be resolved by consulting the following trouble-shooting chart:

Symptom

Left digit of numbers and right
letter of words are missing.

Screen filled with "snow," not
SmartWriter opening menu.

Printed text is garbled.

SmartBASIC program won 't
store after changes are made.

Programs won 't store because
digital data pack is full.

176 • ADAM: The System

Remedy

Adjust horizontal control on
television set or monitor.

Check to make sure television is
set to channel 3 or 4. Make sure
switch box on back of television is
set to computer.

Check to make sure ribbon and
daisy wheel typing element have
been correctly installed.

Program has been locked into
ADAM's memory using the LOCK
command. Use the UNLOCK
command before trying to save a
program.

Free up space on the tape by
deleting old copies of programs.

The ribbon in the printing
cartridge is jammed, causing
uneven printing.

The ribbon continues to jam or
the printing remains uneven.

Take the cartridge out of the
printer. Carefully separate the top
half of the cartridge from the
bottom half. You may have to use
a flat-headed screwdriver, but be
careful not to break the plastic.
Unjam and rewrap the ribbon.
From above and with the printing
area away from you, the ribbon
moves from right to left like a
cassette tape. You can discard the
ribbon on the left spool and
resplice the remaining end onto
the left spool. Now put the two
halves back together. This is a
messy job.

The printing is uneven when the
ribbon isn't pulled through easily.
The uneven pulling also causes
the jamming. One of the causes
can be the little black rubber band
around the two white plastic knobs
on the top of the cartridge. This
band turns the closer knob to wind
the ribbon on the left spool as
ADAM turns the farther knob from
beneath the cartridge to pull the
ribbon from the other spool. As
more and more ribbon is used, the
rate at which the closer knob can
turn changes. The black band can
be so tight that the turning of the
farther knob is restricted by the
slower turning closer knob. One
possible solution is to use another
rubber band that is tight enough to
pull on the closer knob yet doesn't
restrict the farther knob. The band

□-•- _ _ _.. ,-.. __ ...

Printer overheats, or whines.

we use is a plain brown rubber
band costing less than a penny
and measuring about ¾" in
diameter. It is smaller than the
black band, which is about 1 ¼"
across, but is more elastic and
therefore doesn't provide as much
friction. This band will wear out
more quickly, but is a good value
for a penny.

Turn ADAM off for one half hour
for every two hours of use. If the
printer continues to whine when
the machine is turned on again,
rotate paper roller on printer,
advancing paper until whine
stops.

GLOSSARY
Like any field, computer science has its shop talk. The computer

world is filled with technical terms, abstract concepts and obscure
phrases that make learning difficult even for the advanced user. In many
respects, the vocabulary of computers might as well be Greek-it's just
as much a foreign tongue. Even the simplest concept can be made
difficult when couched in complex terms.

But however arduous a task it may be to learn these terms, we think
that getting to know the vocabulary of computers is worthwhile. The
reason: Only by understanding some of the technical terms of computers
can you begin to comprehend how computers work. This is as much true
for small, inexpensive home computers like ADAM as it is for big
computers used in large corporations. Even if you don't plan to use these
words in everyday speech, chances are that someone you're talking to
will. This makes it all the more important for you to learn the lingo of
computers, if only to make you an intelligent conversationalist in com
puter circles.

What follows, then, is a glossary of computer terms. This dictionary
should provide you with a working definition of the most commonly used
words and phrases in computer science. Many of the words should be
familiar to you since they refer to parts and aspects of ADAM that we've
discussed throughout the book. In addition to these words, we've tried to
provide you with a list of other computer terms not specifically connected
to ADAM that will enrich your overall computer vocabulary and make you
a more intelligent computer user, whether it be of ADAM or another
machine. Whenever possible, we've attempted to provide plain English,
easy-to-understand definitions that use analogies to make the point.

A

ACCESS The ability to summon a file from a computer's memory or
to make changes in it. Whenever you call a file onto your television
screen, you are said to be accessing that file.

ACCESS TIME This is the number of seconds required to access a
file from memory. With ADAM, access time is unusually quick because
files are stored on a high-speed tape. Other, costlier computers use disk
drives that enjoy even shorter access times.

ACOUSTIC COUPLER Sometimes known simply as a coupler, this
is a device that enables computers like ADAM to transmit information
over telephone lines. Typically, an acoustic coupler has two plastic cups

Berg and Smith • 179

designed to hold the two ends of a telephone receiver. When the coupler
is connected to a telephone and a computer, information flows from the
computer to the coupler and then over the telephone lines. See also
modem.

ALPHANUMERIC EXPRESSION A term or phrase containing letters
and numbers. An example of such an expression would be an address.

APPLICATION SOFTWARE Computer programs that permit you to
apply your computer's abilities to specific uses, for example, a word
processor such as ADAM's SmartWriter program, which allows you to
write a letter, or a personal finance program, which helps you to balance
your checkbook.

ARITHMETIC EXPRESSION A group of numbers and/or numeric
variables that when used in conjunction with an arithmetic operator such
as addition or subtraction tell the computer to perform a specific
mathematical task. For example:

2+2
5-3
2*2
3/7
A+B

are all arithmetic expressions. In the last example, it is assumed that the
user has defined the variables A and B.

ARITHMETIC LOGIC UNIT Commonly abbreviated as ALU, the
arithmetic logic unit is the part of a computer's electronic brain where
arithmetic operations such as multiplication and division are performed.
The ALU is considered part of a computer's central processing unit
(which see also)-the electronic brain itself.

ARITHMETIC OPERATION Any of the following four mathematical
procedures: addition, subtraction, multiplication and division. Even low
cost home computers like ADAM can perform all of these operations
using large numbers.

ARTIFICIAL INTELLIGENCE Also known simply as Al, this term
refers to the increasing ability of computers to understand normal English
speech, to learn, and to make decisions. Since computers are machines
made by man, they will probably never be able to think in the human
sense. However, scientists are increasingly able to teach computers to
remember experiences so that they do not repeat mistakes.

A A & A _ 'Tl-_ l"\. ~-4---

ASCII An acronym for American Standard Code for Information
Interchange, ASCII is a system for converting ordinary English text,
including BASIC programming language commands, into something the
computer can understand. Based on the binary (base 2) method of
counting, the ASCII system translates each letter, number or symbol into
a binary digit stored in the computer's memory. Then, when the computer
wants to display something, it converts back from binary to regular
speech using the ASCII system. Virtually all modern computers depend
on ASCII for operations.

B

BACKUP Typically used in reference to files in a computer's
memory, a backup is an extra electronic copy of a program, text or set of
instructions that you have given the computer. You make a backup file
just in case you accidentally erase an original file from ADAM's memory.
Since power blackouts and brownouts, magnetic fields and other uncon
trollable forces and events can erase memory, it's critical to make
backups of your most important computer files.

BASE 2 Also known as the binary method of counting, base 2 is the
counting system that computers use. Base 2 has only two digits, 0 and 1,
yet it is possible to express all numbers using these digits. For example,
three is written 11 (one times two, plus one), the number five is written 101
(one times two squared, plus zero times two, plus one). Base 2 facil itates
computer arithmetic, since the electronic switches inside a computer can
be either open or closed, corresponding to zero or one in binary.

BASE 10 This is the numbering system we use in everyday life. The
base 10 system consists of 10 digits, O through 9. It's important to note
that although base 10 is the most commonly used counting system, it is
by no means the only one. Other counting systems, such as base 2 (see)
and base 16, are used in numerous scientific and technical applications.

BASIC An acronym for Beginner's All-purpose Symbolic Instruction
Code, BASIC is a programming language that is rapidly emerging as the
most commonly use·d computer language. Consisting of numerous
computer commands, some common English phrases and a grammar,
BASIC enables the user to communicate with his computer. ADAM uses
a version of BASIC known as SmartBASIC. With SmartBASIC, program
ming errors are pointed out as a program is being written, not at the end
of a work session.

Berg and Smith • 181

BAUD A measure of how quickly information is being transmitted,
the term is typically used in reference to sending data over a telephone
line from one computer to another. For microcomputers, a baud is
approximately one bit per second, so a communications device transmit
ting at 300 baud is sending data at the rate of about 300 bits per second.
This translates into a transmission rate of approximately 5 words a
second or 300 words a minute.

BIT Short for binary digit, a bit is the smallest unit of computer
memory. It has a value of 1 or 0. (See Base 2.) To store a number inside its
memory, ADAM uses 8 bits, even if in most cases the bits are 0. For
example:

00000011

is an 8-bit binary expression for the number 3. This is how ADAM would
store the number 3 in its memory.

BOARD Short for printed circuit board. A board contains the
transistors, resistors, capacitors and other electronic components that
together make up the internal mechanisms of a computer. More pre
cisely, electronic components are soldered onto a board and linked by
ultrathin strips of metal printed on the board. A board is typically made of
a material that does not conduct electricity, such as plastic.

BOOT This is a verb that basically means to load the program that
is a computer's operating system into the computer's working memory. In
other words, by booting up you give the computer the initial instructions
necessary to obey other commands or to carry out other computer
programs. It's possible with some computers, including ADAM, to have a
program booted automatically when the machine is turned on. This term
comes from the word "bootstrap" as in "pulling oneself up by one's own
bootstraps," because of the self-starting nature of the operation.

BUFFER This is a place in a computer's memory or in a printer
where a program, data or text can be stored temporarily while the
computer carries out another task. Buffers are useful because they
enable the computer user to start on another computing task while the
computer is still working on the last task. For example, it's possible to
order a computer to repint a text fife, and then to begin writing another
piece of text while the first piece is being printed. The contents of the first
text are being stored in a buffer.

BUG A bug in computerese is not an insect. Rather, a bug is an
error in a computer program that causes that program either to work
incorrectly or not to work at all. Advanced computer users speak of
debugging their programs, that is, getting the bugs out.

182 • ADAM: The System

BYTE A byte is nothing more than 8 bits, or binary digits. Typically,
computers like ADAM use a full 8 bits-a complete byte-to store one
character, letter, or symbol in memory. The word ADAM, for example,
would consume 4 bytes of memory, one for each letter: A, D, A and M.

C

CANNED SOFTWARE A technical term for a computer program
that has already been written and is packaged and sold in computer
stores with instructions as a single unit. Typically, canned software
consists of applications programs that serve a specific function. for
example, text editing.

CARTRIDGE Just as the word implies, a cartridge is a container,
generally plastic, that holds a tape that computers can read. Cartridges
are similar to cassettes with the one exception that cartridges generally
can only be read and not used as storage devices to record programs.
Most of the games you'll play with ADAM come on cartridges.

CATALOG A catalog (or directory) is a list of the names of
programs and other files currently on storage in a computer's memory. A
computer user asks for a directory to see what's in storage and, equally
important, to see how much storage lies vacant for additional use.

CATHODE RAY TUBE Typically called a CRT, a cathode ray tube is
the main part of a television set or other monitor that forms the picture on
the screen. Among computer users, a cathode ray tube has emerged as
the name given to any monitor that uses a CRT to display an image,
whether it be text or pictures. If you don't want to remember all these
technical aspects, you can simply think of the CRT as your television set.

CENTRAL PROCESSING UNIT Also known simply as the CPU, the
central processing unit is the electronic brain of computers like ADAM. It
is in the CPU that instructions, in the form of a computer program, are
carried out and numbers are manipulated. The CPU also contains a
computer's operating system-the internal program that coordinates
activities among the computer's various parts. The CPU typically takes
the form of a tiny chip of silicon, and is also called a microprocessor. All of
the circuitry that goes into the CPU lies on this silicon chip.

CHIP Short for silicon chip, a chip is a surface, typically made of
silicon, onto which electric circuits are etched. One particularly comp
licated chip is ADAM's electronic brain, known as the CPU or
microprocessor. (See also central processing unit.) This particular chip
has literally hundreds of tiny electronic components soldered onto it that
together compose various electrical circuits.

Berg and Smith • 183

COMMAND This is simply an instruction that orders the computer
to perform a task. Typically a command will consist of several parts. For
example, a multiplication command may tell ADAM to multiply two
numbers, then tell ADAM where to store the result. An example of such a
command in SmartBASIC would be:

10 X=2*3

On the other hand, some commands, such as LIST, just have one part to
them. The LIST command tells ADAM to list out all the parts of a program
you have written.

COMPILER An internal computer program that translates computer
languages such as BASIC into machine language that computers can
understand.

COMPUTER GRAPHICS Graphs, charts, product designs, pictures
and any other displays that use a computer's ability to draw and provide
color images on a television set. ADAM has the ability to provide some
limited graphics.

COMPUTER PROGRAM A logical series of instructions, in a com
puter language, that tell the computer what to do.The computer carries
out each line of a program in order, and each program generally has a
specific purpose. For example, the following program, written in Smart
BASIC, is designed to get ADAM to display the words to a favorite
American song.

10 Print "Row, row, row your bo
at, gently down the stream."

20 Print "Merrily, merrily, me
rrily, merrily, life is but ad
ream. "

30 End

COMPUTER SYSTEM A computer system refers to a computer
used in conjunction with external devices, such as a printer or screen.
Each part-the computer, the printer and the screen-is considered a
component. Together, the components make up the computer system.
More advanced computer systems include such components as disk
drives for memory and plotters to draw graphs and charts. However
costly and complex, a computer system always processes data and
other information and then communicates it to the outside world.

184 • ADAM: The System

i

rgdir
Rectangle

CPU See central processing unit.

CRT See cathode ray tube.

CURSOR This is a tiny flash of light that tells you where you are
currently working on your screen. In the case of word processing
programs, such as ADAM's SmartWriter, the cursor tells you where the
next character will appear on the screen when it is typed. Similarly, the
cursor also indicates where the next character will appear when typing a
program in a programming language, such as SmartBASIC. Each time a
key is hit, the cursor advances one position on the screen. ADAM's cursor
takes the form of a brief underline.

D

DAISY WHEEL PRINTER This is a printer that relies on a special
type of printing element known as a daisy wheel to create images on a
regular page. The element is called a daisy wheel because it is round
and has long thin strips extending out from its core, with the strips
arranged like the petals of a daisy. Each strip has a number or letter on its
end. When a key is struck, the daisy wheel spins to the point of the
requested character, locks in position and strikes against a ribbon, thus
leaving an image on the page. ADAM comes with a letter-quality, daisy
wheel printer.

DATA Any set of numbers, letters or words that serves as a source
of raw information to be manipulated in the course of executing a
computer program. For example, if you write a program to add two
numbers, you might list various candidates at the end of your program.
Such numbers would form your data.

DATA PROCESSING This is the formal name given to the calcula
tions and other data manipulations that take place inside computers like
ADAM. Indeed, all that computers like ADAM do is take data and convert
it into a more usable form.

DEBUG To remove the bugs (which see also)-the misspellings,
errors of logic, and omissions that prevent the program from performing
its assigned task- from a computer program. Debugging can be a
painstaking process. It consists of sifting through a program line by line in
search of errors.

DIRECTORY See catalog.

Bera and Smith • 1 RS

DISKETTE Also called a disk. A square flexible sheet about 5¼
inches across diagonally that has become the most common medium on
which computers store information. You can think of disks as being similar
to blank cassette tapes in the sense that information is recorded on them
and played back from them.

DISPLAY Any output coming from a computer and presented on a
monitor or television set. An example of a display would be a letter that
appears on your screen. (See also cathode ray tube.)

DOT MATRIX PRINTER Unlike ADAM's daisy wheel printer, a dot
matrix printer forms images out of tiny dots grouped together to make
letters or numbers. Some dot matrix printers use a print head that strikes
against a ribbon to form dots on a page; others literally spray the dots
onto the page in the form of wet ink. Dot matrix printers typically work
many times faster than letter-quality printers like ADAM's; quality is
sacrificed for speed and cost.

DOWN TIME A splendid euphemism for the time when computers
break down or are being modified and therefore are unavailable for use.

E

EDIT A broadly defined computer term meaning to change the
contents of a file. It can mean (in the case of word processing) to correct
the spelling, grammar or punctuation of a letter or other text. It can also
mean adding lines, moving lines, or making any other revisions to a text
or program. Indeed, whenever you summon a file to your screen and
make changes you are editing.

ERASE To eliminate a file from memory. You can think of erasing
from a computer's memory as being analogous to erasing words on a
blackboard; once the words have been deleted they are gone forever,
not to be easily replaced. This makes it important for you to think carefully
before you erase material from ADAM's memory.

EXECUTE To instruct a computer to carry out a program or other
instructions. More specifically, you use the RUN command. When ADAM
encounters the word RUN, it immediately begins reading through the
lines of a program and carries out the instructions in sequence.

F
FILE A file is the name given to an electronic storage space in a

computer's memory. When you prepare a program or piece of text and
then store it in memory, the program is said to be stored in a file. Each file

186 • ADAM: The System

has a name that you assign. In fact, the way to think of files is to think of a
filing cabinet with information stored inside it. This filing cabinet is
analogous to the computer's memory, and the file folders that go inside
the cabinet correspond to electronic files in the computer's memory.

FLOPPY DISK See diskette.

FORMATTING The process of electronically organizing a blank
disk into sectors and regions so that information can be stored on the disk
in an ordered manner that makes retrieval easy.

FUNCTION KEY A key on a computer keyboard that when pressed
tells the computer to perform a specific task. Generally, function keys can
be preprogrammed so that they do the same job each time they are
pressed. In the case of ADAM, the Smart Keys labeled with Roman
numerals are function keys.

G

GRAPHICS Any information displayed by a computer on a screen
that is not text or programming language. More precisely, graphics are
charts, graphs and other displays that form a picture on your screen to
convey a message. The message can be a mathematical one--for
example, a pie chart showing market share of various manufacturers in
the home computer field-0r graphics can take the form of animated
figures formed from the computer's ability to project and combine
colored dots on a screen. ADAM has the capacity to produce limited
graphics.

H
HARD COPY A copy of a text, a program, data or other matter from

ADAM's memory that has been printed out and is now in permanent form
that can be held in one's hand. A hard copy can be contrasted to an
electronic copy on ADAM's screen or in ADAM's memory. Unlike hard
copies, electronic copies can be easily and neatly edited.

HARDWARE This is the term used to refer to all the physical
components of a computer system, including the computer itself, and the
printer, monitor, keyboard and other attachments. Software by compari
son, is the technical term for computer programs, the instructions that tell
the computer what to do.

HIGH-LEVEL LANGUAGE A computer language that relies on
familiar English words to convey a message to a computer. Because
high-level languages use everyday terms, they are easier for people to

Bera and Smith • 187

learn than so-called low-level languages, which rely on words that only
the computer can understand. But since a high-level language must be
translated to a low-level language in order for the computer to understand
it, higher languages such as SmartBASIC work relatively slowly.

HOME COMPUTER This is the term used to refer to the broad
category of personal computers costing under a thousand dollars. Home
computers tend to be used for game playing, word processing, money
management topics and information retrieval, such as banking from
home.

INPUT This is any kind of information that you type into ADAM.
Input can be a word or line in a programming language such as
SmartBASIC. Input can also be the response you give to ADAM after it
encounters an input command.

INTEGRATED CIRCUIT A complete circuit that is typically formed
by joining together minute electronic components on the surface of a
single silicon chip. Known sometimes simply as ICs or chips, integrated
circuits form the basis of ADAM's electronic brain.

INTERACTIVE COMPUTING The term given to the ability of com
puters to talk back and forth to users. Generally, with interactive
computing, the user will type a command and the computer will respond.
ADAM has the ability to perform interactive computing.

INTERFACE Any piece of machinery or computer program that
connects the components of a computer system. In the case of ADAM,
the cables between the screen and ADAM's memory console serve as an
interface.

INTERPRETER A program inside ADAM that translates words from
a computer language such as SmartBASIC into phrases the computer
can more easily understand. Typically, the interpreter will translate each
word in a SmartBASIC program, eventually converting the entire program
into something ADAM can deal with.

J

JOYSTICK A computer instrument with a flat base and a stick or
knob extending up from it, used to play computer video games. To
control the position of a character on the screen, the joystick knob or stick
is tilted in the desired direction. Also known as a "game paddle." ADAM
comes equipped with two joysticks.

188 • ADAM: The System

K

K Short for kilobyte, the scientific term for 1,024 (210
) bytes. The

term K is used to measure memory size.

KEYBOARD The most common form of input device for computers,
a computer keyboard typically resembles the keyboard found on an
ordinary typewriter. It has letters, numbers, punctuation marks and other
symbols on it. In ADAM's case, the keyboard also contains ~eys
dedicated to other purposes: the Smart Keys that change margins,
delete, insert, alter screen color and perform other functions.

KEYPUNCH Used on older computers, keypunch is a machine that
punches holes into rectangular cards. The pattern of the holes carries
meaning and enables the user to input a program into a computer.

L
LIBRARY The term given to a group of computer programs, all of

which are oriented to the same purpose. Educational programs, for
example, in which children can learn reading, writing and other skills
through the aid of the computer, would constitute a library of programs.

LIST The command in SmartBASIC that tells ADAM to list out all or
part of a program. A listing, by comparison, is the copy of a program that
ADAM provides after receiving a LIST command.

LOAD To transfer a program or other set of information into a
computer's memory from another location, such as a disk drive or
high-speed tape drive.

LOOP A series of programming instructions that make the com
puter repeat a process. One example of a loop would be a program
designed to have the computer consider each number from 1 to 10, to
raise each number to the power of 2, and to print the result on the screen.

M

MACHINE LANGUAGE The language that computers such as
ADAM understand. Machine language uses a binary code, in which all
letters, words, phrases, numbers and other characters are expressed
using the base numbering system.

MAGNETIC DISK A soft, flexible plastic disk (typically encased in a
hard sheath) on which information is stored electronically. Magnetic
disks, known often simply as "floppy disks," have become the most
popular storage medium for microcomputers.

MAGNETIC TAPE Tape, essentially identical to cassette tape, on
which a magnetic substance has been applied so that information can be
stored and retrieved. In the case of ADAM, the magnetic tape also has
the ability to move swiftly through the tape drive, so it is called high-speed
magnetic tape.

MAINFRAME A large computer, generally used by big corpora
tions and governments, to carry out huge computing tasks. Mainframe is
also the term used to describe the memory console of most computers,
as separate from peripheral devices such as a printer, keyboard or
screen.

MASS STORAGE SYSTEM A computer system for storing large
quantities of programs, data or other information. With most small
computers, mass storage takes the form of floppy disks used in conjunc
tion with disk drives. ADAM, however, comes equipped with another
method of mass storage: the high-speed magnetic tape and drive.

MEMORY The place in a computer system where information is
stored, either temporarily or permanently. The information is translated
into a binary code and is stored by the computer in the form of ones and
zeros. Internal memory, as the phrase implies, is found inside the
machine. Some of this internal memory has been permanently etched into
the computer's hardware in the form of so-called read-only programs that
can be read by the computer but not in any way changed. Other internal
memory takes the form of a computer's working memory-the place
where programs, data and other information are stored temporarily while
being used. External memory, by comparison, usually consists of a floppy
disk, magnetic tape or other memory device outside a computer, on
which information is stored and called up as needed. Each piece of
information is stored in a unique location in the computer's memory.
Sometimes memory is simply called storage.

MENU A list of operations or procedures that a computer can carry
out. A menu typically appears on a user's screen, and the user picks from
the available choices to have the computer fulfill a specific task.
Programs presenting the operator with a list of choices displayed on the
screen are commonly referred to as menu-driven programs.

MICROCOMPUTER The smallest of computers, a microcomputer
normally combines a microprocessor, a memory device such as a tape
drive, an input device such as a keyboard, and an output vehicle such as
a television screen to provide complete computing capabilities in a single
package. Although smaller than minicomputers, microcomputers use the
latest technology and cost hundreds of dollars less than minicomputers.
The micro market is the fastest growing sector in the entire computer
field.

190 • ADAM: The System

MINICOMPUTER Midway between a microcomputer and a
mainframe, a minicomputer is a medium-sized machine used typically by
medium-sized firms for such diverse computing tasks as payroll and
word processing. Since minicomputers are physically smaller than
mainframes, they generally cost less than mainframes and offer less
memory capability.

MODEM Short for MOdulator-DEModulator, a modem is a device
that enables a home computer to transmit information electronically over
telephone lines to communicate with other computers such as big,
mainframe machines. The modem acts as the interface between the
computer and the telephone, converting the binary-coded information
inside the machine into electronic impulses that can travel over the phone
lines.

MONITOR A screen, similar to that of a television set, designed
especially to display the output of a computer.

N
NElWORK Any combination of computers, terminals, printers and

monitors linked together to achieve a specific purpose such as inventory
control in a department store. Networking often involves linking com
puters in separate, remote locations.

NIBBLE The pet name given by long-time computer enthusiasts to
a half of a byte. Since a byte contains 8 bits, a nibble contains 4 bits.
Generally, only half of a character, whether a number or letter, can be
expressed by using a nibble.

NUMERIC VARIABLE A variable that has been defined beforehand
to include only numbers. Numeric variables are in contrast to string
variables, whose contents can be either numbers or letters.

0
ON LINE The term used to describe the situation when a terminal is

hooked up to a "live" computer capable of doing all sorts of computing
tasks. Since the user has established a direct link with the computer, we
say that the user is working on line. This term may be used even if there is
no single physical line linking the computer with its remote user.

OPERATING SYSTEM This is a permanent program built inside
ADAM and other small home computers that acts as an internal house
keeper, supervising the running of applications programs and controlling
the activity of various input and output devices (such as the keyboard
and monitor). In ADAM's case, the operating system keeps track of what
ADAM's central processing unit is doing, what the printer is up to, and

RPrr1 ~nrl ~mith . 101

what is currently in memory, both working memory and mass storage
outside the machine. The operating system is responsible for coordinat
ing these diverse activities to make sure they run smoothly.

OUTPUT The broad name given to the display appearing on your
television screen as a result of any work a computer such as ADAM may
do. In addition, output refers to the printed results of a computing job, or
to results that appear on a remote terminal.

OVERFLOW The term used to describe the situation in which the
computer has ingested so much information that it stops dead in its
tracks, unable to process any further information. In other words, if
ADAM's memory is overflowing, it means it is filled up, sated with
information, and cannot do any further work until some of its working
memory is cleared.

p

PERIPHERAL EQUIPMENT Anything used in conjunction with a
computer that is not technically the computer itself. In ADAM's case, the
memory console would be considered the computer. The printer and
monitor (as well as any other attachments you might buy, such as a
modem or floppy disk drive) are considered peripheral equipment.

PORT Like a port on a ship, a computer port is nothing more than a
hole in a computer. It is, more precisely, a point where you can make
electrical attachments between the computer and other devices. More
simply, a port is the place where you plug other devices into a computer.

PRINTER An output device used to type a copy of what appears on
your screen onto a piece of paper. ADAM comes with a letter-quality
printer, meaning.that the printer is capable of typing out correspondence
quality prose virtually identical to that provided by a conventional
typewriter.

PROCESSOR See central processing unit.

PROGRAM A series of instructions that the computer carries out in
sequential order. Ordinarily, programs are written in programming
languages such as SmartBASIC. A person who writes programs is called
a programmer.

PRINTOUT A hard copy, on paper, of the output from the com
puter.

192 • ADAM: The System

Q

QWERTY KEYBOARD The name given to a computer keyboard
whose letters are arranged similarly to the way letters are arranged on
most typewriters. If you think about it, the letters QWERTY shouldn't seem
so foreign. They're just the first six letters on the left-hand side of the
second row of the keyboard.

R
RANDOM ACCESS MEMORY Also known as RAM, random ac

cess memory is memory in which information can be both stored and
retrieved. This is opposed to read-only memory (see also), from which
information can be retrieved but which cannot be altered or used as a
storage device. Random access memory is called random because
information can be stored and retrieved extremely quickly; in a moment's
notice, the computer can go to any random location in its memory.
Random access memory is the type of memory used by ADAM as it
processes programs and other information you may give it.

READ-ONLY MEMORY Known alternatively as ROM, read-only
memory is information that has been permanently etched either into the
circuits of a computer or onto a cartridge outside the machine. As such,
read-only memory can be neither altered nor augmented. Information can
be copied from read-only memory, but nothing new can be recorded on
ROM.

RETURN KEY The key on the right side of ADAM's keyboard that
serves the dual purpose of inserting carriage returns (if you' re typing
text), and of entering into the computer's memory individual lines of
computer instruction (if you're writing a program in SmartBASIC).

RF MODULATOR An interface between a computer and a televi
sion that enables the computer output to be displayed on the television's
screen. ADAM comes with an RF modulator. It's the little, rectangular
metal box that you attached when you hooked up ADAM to the back of
your television set.

s
SEMICONDUCTOR A material that is a better conduit of electricity

than an insulator (such as wood), but not as good as a conductor (such
as silver). Semiconductors such as silicon are vital to computers, for it is
on tiny wafers of silicon that much internal electronic c ircuitry is etched.

SOFT COPY A copy of a text, data, program or other computer
instruction that appears on a television screen or monitor while the
computer is in use. As such, soft copies can't be picked up and toted
away; they can only be viewed. This is opposed to a hard copy, as on
paper, that can be picked up, edited with a pencil, and carried off.

SOFTWARE A fancy name for computer programs.

STATEMENT A line of a computer program, an individual com
mand or instruction that you would give to ADAM.

STORAGE Another name given to ADAM's memory. The place
where information-programs, data, and so on-can be stored and
easily retrieved. Unlike physical storage (such as a warehouse where you
might deposit your worldly possessions), ADAM's storage is all
electronic. Everything that goes into ADAM's storage is recorded
electronically inside tiny electrical circuits.

STRING A set of letters that are somehow connected in a logical
sense. The word "ADAM," for example, would be considered a string. A
sentence such as "ADAM is the best computer since sliced bread" would
also be considered a string. Usually a distinction is drawn between string
variables and numbers. ADAM can perform arithmetic only on numbers,
not ordinary words as strings. It would make no sense to ADAM, for
example, to multiply the following: cheeseburger x hotdog. The only
thing ADAM could do with such edible strings would be to print them out
on the screen, provided of course they appeared inside quotation marks
in a PRINT statement.

SYNTAX The formal name given to the grammar of a programming
language such as SmartBASIC. Just as in regular speech we say a
person may have made an error in grammar if he speaks poorly, ADAM
will tell you that you have made a syntax error if a command or other
instruction you give it does not adhere to the grammar rules ADAM
knows.

T

TAPE Short for magnetic tape. This is the storage medium that
ADAM generally uses to record information. In ADAM's case, the
magnetic tape looks and acts virtually identically to that used by a regular
cassette recorder. Information is transmitted from ADAM's internal work
ing memory to the tape, where it is recorded for retrieval at a later date.

194 • ADAM: The System

TAPE DRIVE Similar to a conventional cassette recorder, a tape
drive holds the magnetic tape that ADAM uses to store information. The
drive is also responsible for spinning the tape to the appropriate point
when a file is being retrieved. The drive also includes a so-called
read/write head for reading from and/or writing information to a magnetic
tape.

TERMINAL A machine that acts as a receiver and transmitter of
information to a computer but that has no real computing power itself.
Usually, the term is used in conjunction with telecommunications--the
sending and receiving of information over phone lines. The terminal acts
as a sort of ending point, where all information from a distant computer is
received and viewed.

TEXT EDITOR Another term for a word processor, a text editor is a
computer program designed to make writing and editing text extremely
easy. With a text editor such as SmartWriter, it's possible to do all one's
writing and corrections on a computer screen before printing out hard
copy on paper. Only when the text is in finished form, after all insertions
and deletions have been made, do you instruct the text editor to print your
work.

V

VARIABLE An electronic pigeonhole that has a single identification
but whose contents change. Specifically, a variable is a letter or word that
is defined to represent a number, another letter or word, or to hold the
results of an arithmetic computation. In the equation A= 7, A is a numeric
variable. In the equation B$ = "Home Computer," B$ is a string variable.
ADAM has been preprogrammed to understand both numeric and string
variables.

VERTICAL SCROLLING The process of moving lines of text up and
down the screen so that additional text can be brought into view from
below or above. Scrolling is necessary whenever a text is more than one
screenful long. With ADAM it's possible to scroll up by striking the return
key and to scroll down by using the cursor control keys.

VIDEO DISPLAY Another term for monitor, screen or CRT, a video
display is a device designed to show output from a computer. Basically,
you can think of a video display as the screen on your television set.

w
WAFER The term used to describe the tiny square sheets of silicon

on which ADAM's electronic circuits are etched.

·WORD PROCESSING A powerful computerized procedure for
writing and editing text on a screen. With word processing programs
such as ADAM's SmartWriter, it's possible to do all of your editing
deletions, insertions, moving of text-on the screen before printing out a
final draft. It's also possible to store a body of text, which can then be
retrieved at a later date for additional viewing or editing.

196 • ADAM: The System

rgdir
Rectangle

To save space while
working at your computer,
tuck the end flap inside
the back cover. For easy
reference on your book
shelf, fold over the end
flap, tuck inside the front
cover and position the
book with the spine and
title readily visible.

